At the time of the accident, the Cessna 210 was for sale. The pilot had conducted a pre-purchase inspection, including an engine run, the day before the accident. On the day of the accident, the pilot and two passengers boarded the aircraft for an evaluation flight to a nearby aerodrome. Following an uneventful engine run-up, the aircraft was observed to take off from runway 31R and flew for approximately 2.5 km at low level. The pilot subsequently carried out a successful ditching into a water-filled quarry. The pilot and both passengers successfully exited the aircraft but one passenger, who was unable to swim, drowned before reaching land.
The aircraft was manufactured in 1965 and had accumulated 8,013 airframe hours. All required maintenance had been performed and the aircraft had a current maintenance release, which listed no outstanding unserviceabilities.
During most of the previous year, the aircraft was in short-term storage at Mt Gambier SA. Approximately four months before the accident, a rough running engine was noted in the aircraft logbooks. The problem was later diagnosed as a cracked number 4 cylinder. The cylinder was subsequently replaced and the aircraft's 100 hourly inspection was carried out on 26 November 1999. On 24 December 1999, the aircraft was refuelled at Mt Gambier and flown to Moorabbin, Vic. by a ferry pilot who reported that the engine and aircraft performed normally. Except for one short flight five weeks before the accident, the aircraft remained on the ground until the accident flight. The engine was started and ground run four days before the accident flight. During the ground run, the pilot, who was not the accident pilot, noticed that the fuel selector valve was stiff but did not record the problem on the maintenance release.
Examination of the aircraft after it had been recovered from the quarry found that the flaps were at approximately the 10 degree position and the landing gear was retracted. Visible damage to the exterior of the airframe was limited to distortion of the main landing gear doors. The line to the manifold air pressure gauge was broken at the engine firewall. The throttle was in the idle position, the propeller control was in the full fine position and the mixture control was in the fully rich position. However, as the recovery of the aircraft from the quarry probably distorted the engine mounts, the positions of engine controls were not considered reliable. The magneto switch was in the BOTH position and both fuel pump switches were OFF. All engine instruments displayed readings that were consistent with a non-operating engine.
Engine and propeller
After recovery, the Teledyne Continental IO520 engine was dismantled for examination and all appropriate fuel and ignition system components were removed and tested. The propeller was examined and its governor bench tested. No fault that could have produced a significant loss of power was found with either the engine or the propeller. No blockages or loose baffles were found in the exhaust system.
Fuel system
The fuel selector valve handle was found in the left tank position but the selector valve, which is connected to the handle by two linkages, was found in the position of partly open to the left tank. The movement of the valve was stiff and the linkages were worn, allowing the movement of the valve to lag behind the handle, thereby giving a false indication of the valve's true position. The inside of the valve was corroded and the detent in the left tank position could not be felt when the valve was tested.
Fuel system testing
The position of the fuel selector valve had been index marked on the valve before its removal from the aircraft. The valve was rotated to the indexed position four times during testing and the flow rate measured. The measured flow rates at the indexed position varied between a minimum of 90 pounds per hour (PPH) and a maximum of 280 PPH. The engine manufacturer's specifications for the fuel system stated that the required fuel flow at full power was between 136 and 146 PPH. The engine manufacturer advised that with the fuel flow restricted to 90 PPH, this engine would develop approximately 75% of maximum power. The owner's manual stated that normal cruise power setting should be between 65% and 75% of maximum power.
When all the fuel system components, except the fuel selector valve, were connected to a test rig, they were confirmed to be capable of delivering to the engine a fuel flow that was slightly in excess of the engine manufacturer's specifications.
Fuel
Approximately 60 litres of fuel was drained from each wing tank after the aircraft was recovered from the quarry. When tested, that fuel was the correct type for the aircraft. A small amount of free water was present in the fuel. Ethylene Diamine (EDA) was the contaminant involved in the aviation gasoline contamination problem that occurred in southern Australia over the December 1999/January 2000 period. There was no EDA detected in the fuel samples taken from the aircraft, nor were any of the deposits, that are typically produced by EDA, found in any fuel system components.
Pilot experience
The pilot had held a Commercial Pilot Licence since 1962 and an Air Transport Pilot Licence since 1982. He had flown more than 13,000 hours on a range of aircraft including multi-engined turboprop aircraft. Since 1997, he had flown approximately 1,200 hours on Maule floatplanes and in the three months to the accident, almost all his flying had been on this type. He last flew an aircraft from the Cessna 200 series approximately three months before the accident, however, he had not flown the accident aircraft since 1966. He was correctly licensed and endorsed for the flight.
Witnesses
Six people located around the aerodrome witnessed the aircraft take-off. Their evidence was consistent on the following points:
- the aircraft engine ran normally during start, taxi and run-up,
- the engine note during the latter stages of the takeoff and the initial climb was unusual for the aircraft type,
- the aircraft became airborne at a point between 2/3 and 3/4 along the runway,
- the landing gear began retracting as soon as the aircraft left the ground, and
- the aircraft's angle of climb after takeoff was lower than normal.
Of the five witnesses who heard the aircraft takeoff, four reported that the engine sounded as though it was running smoothly at less than full power. The fifth witness reported that the engine sounded uneven, as though it was "running on only four of its six cylinders".
Pilot's recollection
The pilot reported that on the day before the accident and the day of the accident, the aircraft's engine had started and run without difficulty. Both fuel tanks were dipped and found to be slightly less than one quarter full. For the accident flight, the fuel selector valve remained in the left tank position from the engine start until the aircraft ditched. The engine run-up, that did not include a full power check, had not shown any unserviceabilities with the engine. The takeoff was normal until the landing gear was selected up. The pilot recalled that at that point the aircraft experienced a gradual loss of performance and was unable gain any further altitude. He recalled that after takeoff the manifold air pressure gauge read 22 inches which is approximately 5 inches less than would be expected. The pilot reported that when he realised that the aircraft would not make it back to the aerodrome, he decided to land in the first clear area that he saw. When the water-filled quarry came into view, he decided that a ditching was the best option available to him.
Performance of accident aircraft
The evidence of the ground witnesses and the pilot was consistent on the following points.
- No sudden loss of performance occurred.
- The aircraft displayed lower performance than expected after takeoff; however, it was still able to climb to a height of between 50 ft and 100 ft.
- The aircraft was unable to maintain height during the later stages of the flight.
Data provided by the aircraft manufacturer indicated that a Cessna 210E aircraft with 10 degrees of flap extended, would become airborne after a takeoff run of 104 metres, under the same conditions as the accident aircraft experienced. Eyewitness statements indicated that the aircraft did not leave the ground until it was at least two thirds of the distance along the runway, a distance of 748 m. That represented a takeoff run 719% longer than expected.
The aircraft manufacturer advised that the operation of the hydraulic pump during the landing gear retraction cycle in a normally operating Cessna 210E aircraft consumed approximately 7 horsepower, which was 3.8 % of the engine output at the maximum power setting. That would result in a small reduction in climb performance during gear retraction. In addition, the drag of the landing gear doors, which open during the retraction cycle, would also reduce the aircraft's performance by a significant margin. If the engine was producing less than maximum power, the percentage loss of performance during the landing gear retraction cycle would be proportionally greater.
The distance required to stop the aircraft, if the takeoff had been rejected from the lift off point, would be approximately equal to the landing ground roll distance under the same conditions. From the lift off point, the aircraft had 750 m to run before the aerodrome perimeter fence. Half of this distance was sealed runway; the other half was level grass. The manufacturer's data showed that at maximum weight, 233 metres would have been required to stop on a grass runway.
Performance of pilot's most recent aircraft type
The Maule floatplane, the aircraft that the pilot had flown most often in the previous three months, at maximum weight had a take-off run of approximately 500 m from smooth water and longer from rough water. Compared to a fully serviceable Cessna 210E aircraft, the Maule floatplane normally required a longer take-off run and had a much lower rate of acceleration.
Related accidents
In 1984, a US registered Cessna 210 sustained total power loss in-flight and the pilot force landed the aircraft. A factor in the accident was the use of the auxiliary fuel pump in the high position (NTSB CHI84FA282). In 1976, an Australian registered Cessna 210 was damaged in a force landing after the engine lost all power as a result of incorrect use of fuel pump in the high position (BASI 197606853). The owner's manual stated that the electric fuel pump should not be switched to the high position during normal operation because richer mixture than normal will result.
In 1972, a Cessna 210 was damaged in a force landing after the engine lost all power. A factor contributing to that accident was the prolonged sideslipping of the aircraft with low level of fuel in the tanks. (BASI 197204960). The owner's manual advised that with fuel tanks one quarter full or less, prolonged uncoordinated flight can uncover the fuel tank outlets, causing fuel starvation and engine stoppage. It further advised that "prolonged" means more than one minute.
ATSB records contain reports of four accidents (BASI 197304110, 198101450, 198201391, 198802338) involving Cessna 210 aircraft in which vapour lock in the engine fuel system resulted in complete power loss.