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Safety summary 
What happened 
On 22 January 2018, a Sydney Trains passenger train 
(A42) failed to stop as intended at the Richmond Station 
platform, and collided with the buffer stop at the end of the 
platform at a speed of about 26 km/h. There were 26 
people on board the train (including the driver and a 
guard). Sixteen people were injured and treated at the 
scene, some with serious injuries.  

What the ATSB found 
The ATSB’s investigation found that the driver of A42 did 
not slow the train at a crucial time when approaching the buffer stop at the end of Platform 2 at 
Richmond Station. A number of possibilities for the driver’s inaction were examined during the 
course of the investigation, these included: the driver blacking out, the driver experiencing a 
microsleep due to fatigue impairment, or the driver being distracted / inattentive. The investigation 
was unable to conclusively determine what caused the driver to have no control system input for 
22 seconds shortly before impact.  

The ATSB concluded that the buffer stop withstood the impact of the collision and prevented the 
train from crossing onto a main road. It further concluded that the two hydro-pneumatic rams on 
the front of the buffer stop did not perform as designed, due to non-alignment with the crash 
energy management system on the front of the Waratah train, and Sydney Trains’ risk-
management procedures did not rectify deficiencies in the buffer stop design at Richmond before 
the incident. The crash energy management system on A42 reduced the impact force of the 
collision but not all components performed as designed.  

What's been done as a result 
The buffer stops for Platforms 1 and 2 at Richmond were redesigned. The new buffer stops are 
compliant with the NSW buffer stop standard. The NSW Asset Standards Authority (ASA) has 
reviewed and updated their buffer stop standard.  

Other measures which may have prevented the collision, such as the installation of an 
intermediate train stops and automatic train protection, were not present at the time of the 
incident. Intermediate train stops, previously identified and recommended as a risk control, have 
been installed at Richmond since the incident. Automatic train protection which, if installed on A42, 
may have prevented the incident, was still in trial stage at the time of the incident. Transport for 
New South Wales (TfNSW) have scheduled automatic train protection to be operational on most 
Sydney Trains electric rolling stock by May 2021. 

Computer modelling and analysis of the crash performance of the A-set and its crash energy 
management system has been undertaken. This will provide better understanding for future rolling 
stock specification and design. 

Safety message 
Rail operators should ensure that multi-layered defences are in place against over-speeding. This 
should include infrastructure design, rolling stock design and train crew health management. They 
need to ensure that identified risk controls are implemented, and that these control measures are 
effective in their performance. 

A42 at Richmond Station 

 
Source: ATSB 
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The occurrence 
Events prior to collision 
The crew of the accident train, run 150-E, consisted of a driver and guard who had commenced 
duty in the early hours of 22 January 2018. The driver signed on at the Blacktown Depot at 03121 
to commence his shift. He was due to finish at 1111. At the start of his shift, he first prepared a 
train in the Blacktown siding and then operated run 149-B from Blacktown at 0515, arriving at 
Richmond at 0552. Afterwards, he operated a return service to Blacktown arriving at 0645, and 
then travelled as a passenger on this same train to Central Station, arriving at 0729. The driver 
commenced a break until 0806 when he relieved another driver and operated run 286-D to 
Blacktown, arriving at 0843. The driver then had a meal break, walking into the main street of 
Blacktown to purchase and consume some food. He returned to the station, waiting on Platform 2 
for run 150-E to arrive. Run 150-E had departed Central Station at 0834 and was due to arrive at 
Blacktown at 0917 where a crew changeover occurred (Figure 1). 

Figure 1: Location Map  

 
This map shows the path of run 150-E from Central to Richmond Station and the major railway lines in the Sydney metropolitan area. 
Source: Geoscience Australia, modified by the ATSB 

The train arrived at 0917, as per the timetable. The outgoing driver verbally provided information 
about the state of the train. There were no faults reported by the outgoing driver. The driver took 
his seated position in carriage (car) 1, closed his cabin door, then received a ‘proceed’ bell signal 

                                                      
1  The 24-hour clock is used in this report. Local time was Australian Eastern Daylight-saving Time (EDT). Coordinated 

Universal Time (UTC) + 11 hours. 
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from the guard. The train departed 2 minutes late, but was on schedule by the time it reached 
Clarendon, eight stations later. 

The guard of the accident train had signed on at Richmond Station at 0243 and worked two 
Richmond to Blacktown return services and then a Blacktown to Schofields service before 
returning to Blacktown Station at 0851. The guard waited at the city end of Platform 2 for run 
150-E to arrive. He did not speak to the driver while waiting for the train, nor at any time 
throughout the trip to Richmond. The guard received a handover from the outgoing guard and 
took his position in the compartment at the rear of the train, car 8. 

After departing Blacktown Station at 0920, the train made eight stops before arriving at the last 
station before Richmond, East Richmond at 0950:10. The driver said the train was operating 
normally throughout the journey and that, up to this point, he was feeling fine and had no 
indication of any problem with his health. A tabular summary of the journey from Blacktown to 
Richmond is shown in Table 1. 

Table 1: Tabular summary of journey of 150-E, Blacktown Station to Richmond Station 
Station Timetable Max speed in 

section 
Time of door 
opening 

Time of door 
closing 

Time driver 
powered on 

Blacktown 0917- 0918  0919:27.4 0920:05.6 0920:09.9 
  92 km/h    
Marayong 0920  0922:47.1 0923:01.5 0923:02.5 
  83 km/h    
Quakers Hill 0924  0925:41.9 0926:00.0 0926:02.5 
  107 km/h    
Schofields 0926 - 0927  0928:38.1 0928:56.2 0928:57.5 
  99 km/h    
Riverstone 0930 - 0932  0932:07.1 0933:03.0 0933:06.4 
  91 km/h    
Vineyard 0937  0937:11.6 0937:27.0 0937:28.4 
  100 km/h    
Mulgrave 0940  0940:45.1 0940:57.4 0940:58.5 
  78 km/h    
Windsor 0944  0944:07.6 0944:31.0 0944:33.0 
  85 km/h    
Clarendon 0947 – 0948  0946:53.4 0947:07.4 0947:08.4 
  92 km/h    
East Richmond 0951  0950:10.6 0950:25.0 0950:27.0 
  52 km/h    
Richmond 0952  0951:46   

Source: Sydney Trains 

The maximum speed was exceeded, momentarily, on two occasions. Between Mulgrave and 
Windsor, the maximum allowable track speed is 75 km/h and the train reached a speed of 
78 km/h for a short period of 4.7 seconds. Between East Richmond and Richmond, the maximum 
allowable track speed is 50 km/h and the train reached a speed of 52 km/h for a brief period of 
1.9 seconds. 

Run 150-E departed East Richmond approximately 30 seconds ahead of timetable at 0950:27. 
The driver received a ‘proceed’ bell signal from the guard and, using the power/brake handle, 
increased power demand to 85% at 0950:29 (maximum power is 90%). This power level was 
maintained for 19.5 seconds until the train had reached a speed of 48 km/h. The driver then 
reduced power demand to 50% at 0950:48.5.  

At 0950:48.9, the driver operated the train’s town horn for 260 milliseconds on approach to the 
Bourke St level crossing. Due to the slight downhill track gradient of 1:77, the train increased 
speed to 52 km/h. The driver said that he could see the caution signal ahead and Richmond 
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Platform 2 in the distance. He said he was aiming for a smooth stop before the buffer at Richmond 
Station (Figure 2). 

Figure 2: Richmond Station and train path of 150-E 

  
Source: Google maps with annotations by ATSB 

At 0951:06.1, the driver applied the power/brake control handle from 50% to brake (39%) just 
above the minimum brake demand level. The train was travelling at 52 km/h and the distance to 
the buffer stop was 270 m. 

Somewhere past the home signal RD5, which displayed a green over red (caution) indication, but 
sometime after the action of applying the brake, the driver reported that he ‘felt dark, dizzy and 
powerless, and that my body had no control over me. I felt complete black, dark. I don’t know what 
happened to me after that.’ According to event recorder analysis from other similar trains, drivers 
usually make a number of brake applications during this time, which change the rate of 
deceleration. 

The distance from the end of East Richmond platform to the start of Richmond platform is 
approximately 506 m; run 150-E took 46 s to travel this distance. As the train approached 
Richmond Station, the guard, who was preparing to finish his shift, had packed his bag and was 
standing near the door on the platform side of the train. He said he was looking at the internal 
CCTV screen as the train entered the platform. This screen displays multiple views from various 
cameras located in the passenger areas and on the train’s exterior. 

Meanwhile, the passengers inside the train were preparing to disembark at this end-of-the-line 
stop. Many had left their seat and were making their way to, or were already in, the vestibule area 
near the doors. There was no announcement of the impending collision and the passengers had 
no warning that the train was about to collide with the buffer stop. There were 24 passengers and 
two crew members on board the train at the time of the collision. The majority of the passengers 
were in the front half of the train. There were seven passengers in car 1 and seven in car 2, two 
passengers in car 3, five passengers in car 4, two passengers in car 5 and one passenger in car 
6. 

The collision 
At 0951:15.6, the leading car of A42 passed the Sydney-end of Platform 2 at Richmond Station at 
a speed of 47 km/h. The train was timetabled to arrive at 0952. A42, under the effect of electro-
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dynamic braking with brake cylinder pressure at zero, was decelerating slowly (~0.2 m/s2) as it 
travelled the approximate 168 m-length of Richmond Station. 

The driver stated that when he regained his senses he reacted by applying the emergency brake. 
At 0951:28.1, the power / brake control handle was moved to the maximum brake position. There 
had been no control system input by the driver since 0951:06.1, 22 seconds before. The train’s 
speed at this point was 36 km/h and the distance to the buffer stop was 27 m. 

It was approximately a car length before the buffer stop that the guard realised there was a 
problem. This would have given him less than 2 seconds to activate the emergency brake, which 
meant that even if it was activated, the train would have still collided with the buffer stop. There 
were no early clues to alert the guard that there was a problem with the driver. The train had 
entered the platform at a normal approach speed and the train was decelerating slightly. In this 
situation, the investigation determined that there was insufficient time for the guard to react by 
applying the emergency brake in his compartment. 

At 0951:29.5, the driver moved the power/brake control handle to emergency. The train’s speed at 
this point was 34 km/h and the distance to the buffer stop was 17 m.  

The first indication of the impact with the buffer stop is at 0951.31.1, when the Emergency Door 
Release Terminal Door Seal was recorded as having opened. This is the emergency door at the 
front of the train, which opens to the driver’s compartment. The train’s speed at impact was 
26 km/h. The buffer stop stopped the progress of A42 and the impact sent a high deceleration 
shock pulse down the train. 

After the impact with the buffer stop, the front of the train came to rest approximately 3 m from the 
buffer stop and the rear carriages recoiled further due to the partial recovery of the energy 
absorption elements that are distributed throughout the train. The impact caused all cars to 
concertina together, with some wheels lifting from the track. A post-incident inspection found, on 
the rear wheelset of the rear bogie on the third position car one wheel suspended above the rail, 
the other wheel derailed and all wheels of the rear bogie (No.1 end) on the fifth position car 
derailed.  

There was damage to the front of the train, particularly the head of the Sharfenberg coupler (No.2 
end of motor driving carriage D6342), the lower section of the front nose cone and the 
undercarriage. There was significant damage to the interconnecting areas between cars, the 
associated door systems and the coupling systems between cars. There was no visible damage 
to the interior of the driver’s cab or to the internal passenger saloon areas. The emergency door at 
the front of the train had become ajar during of the collision. The exterior stainless steel skin of the 
carriages, apart from the areas between carriages, sustained no visible damage.2 All carriage 
windows and exterior doors were undamaged. The exterior doors and opening systems were all 
functioning following the collision. 

The collision caused substantial damage to the end-of-track buffer stop with a significant 
transverse crack opening at the corner of the base and the upright. The two hydro-pneumatic 
rams positioned on the front of the buffer stop also sustained damage (Figure 3). 

                                                      
2  There are limitations of visual inspections. There is potential for damage to have occurred to the train’s bodyshell not 

immediately apparent on a general qualitative visual inspection but may become evident using other inspection 
methods. 
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Figure 3: Platform 2 buffer stop and front of A42 

 
This figure shows the post-collision damage to the buffer stop on Platform 2 and the front of A42. 
Source: ATSB 

The guard was standing near the closed exterior door of the rear driver’s / guard’s compartment 
as the train entered the station. He said he was watching the train’s CCTV surveillance screen. He 
became aware that the train braking was not slowing the train as it usually would. At the same 
time as he was thinking to apply the brake himself, the driver applied the power/brake handle to 
full brake application. The guard was thrown forward into the handrail on the leading bulkhead. 
The guard said he fell to the floor and had trouble breathing due to sustaining cracked ribs.  

Post-collision events 
By 0951:38, the train had come to a complete stop. CCTV showed the guard at the open door of 
his compartment who then opened the passenger doors a few seconds later. The guard stumbled 
out onto the platform and crouched on his haunches clutching his ribs. He returned to his 
compartment and emerged later. 

The driver stated that he was dazed but conscious following the collision. He remained in the lead 
driver’s compartment until 0952:25, when he emerged to walk around the platform and then 
returned to the cab. When interviewed, he stated ‘I was very shocked, disorientated and 
traumatised. I was trying to recollect and compose myself … but I was in so much pain’. He 
sustained injuries to his arm, hip and head. His injuries were mainly on the right-hand side of his 
body. 

The triple zero emergency line first received a call about the incident at 0952:52. At 0953:40, the 
station manager called the Rail Management Centre to inform them of the accident and request 
assistance. The station manager was on the platform, next to the buffer stop, at the time of the 
collision. All three branches of emergency services attended this event. NSW Ambulance were 
first to arrive on scene at 1002. Shortly afterwards, a NSW Police inspector assumed command of 
the site.  

At 0953:44, the driver called the Rail Management Centre and informed them that his train had 
struck the buffer stop. He gave a coherent account of the situation. A relieving guard who had 
been waiting on the platform checked to ensure that the driver did not require immediate treatment 
and then left to help injured passengers. 
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Richmond Station staff and other Sydney Trains employees who were already on the platform 
were first to attend to the injured passengers and train crew. Some passengers emerged from the 
train after the train doors were opened by the guard. Others, too injured to move, were stretchered 
out by emergency services. 

A total of 16 persons were injured as a result of the collision. Many were assessed and received 
treatment in Richmond Park, across the road from the station. Five persons were assessed as 
requiring immediate transfer to hospital. NSW Ambulance confirmed that 15 persons were 
transported to hospital for further treatment and assessment. The driver and guard were breath 
tested by police, both returned a negative result. 

At 1045, the driver, after being treated for his injuries, was interviewed by NSW Police. Later he 
was transported to Blacktown hospital for observation and drug and alcohol testing. The results 
were negative. 

Site examination, recovery and repair 
At 1145, once emergency services had completed evacuation of the injured, the ATSB formally 
took control of the site from NSW Police for the purpose of conducting safety investigations. The 
ATSB then inspected the train, the track, and the adjacent infrastructure including the buffer stop. 

On 24 January 2018, the ATSB took possession of the event recorders and digital video recorders 
from the train while it was still at Richmond Station. Sydney Trains successfully relocated the cars 
to the storage siding where further assessment and temporary repairs of the cars occurred. 

The train remained at Richmond until 2 February 2018 when the three rear cars (D6442, N5442, 
N5642) were coupled to a locomotive and hauled to the Downer3 maintenance facility at Cardiff, 
Newcastle, New South Wales, approximately 150 km by rail from Richmond. Two more cars 
(T6642, T6542) were moved on 14 February 2018. The remaining 3 cars (D6342, N5342, N5542) 
were moved on 21 February 2018.  

The initial response, recovery and transfer of A42 to Cardiff were coordinated between all parties 
including Downer, Sydney Trains and Transport for New South Wales. Sydney Trains is the 
operator of the train, Downer is the maintainer of the train, and TfNSW through the Asset 
Standards Authority sets standards for rolling stock and infrastructure. 

At Cardiff, a number of non-intrusive inspections took place in which the damage to A42 was 
photographed and documented. Downer engineering specialists assessed the options for repair. 
All major components were removed and individually assessed for damage. Comprehensive 
testing and commissioning was undertaken by Downer with support from Sydney Trains. 

A42 recommenced revenue service on 28 March 2019 following a 14-month repair effort. The total 
repair cost for A42 was approximately $4.8 million. 

                                                      
3  Downer is an integrated services company listed on the Australian Securities Exchange as Downer EDI. Business units 

within the Downer group includes EDI Rail PPP Maintenance and Downer Rail. 
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Context 
Location 
Richmond is a suburb of Sydney, located approximately 52 km northwest of the CBD. Richmond 
Station is a terminating station located 60.761 km by rail from Central Station. Behind the buffer 
stop was a pedestrian ramp, an overhead catenary stanchion, a pedestrian footpath and a four-
lane road (Market St) (Figure 4). 

Figure 4: Richmond Station  

 
This figure shows the street entrance to Richmond Station and the location of A42 post-collision in proximity with the pedestrian footpath 
on Market Street. 
Source: ATSB 

Organisation 
Sydney Trains is the operator of rail services across metropolitan Sydney, operating passenger 
services in an area bordered by Berowra, Emu Plains, Macarthur, Richmond and Waterfall. It 
controls train movements on its network using signal control complexes and the Rail Management 
Centre. The Richmond rail line has passenger services at about 30-minute intervals during the 
peak period. 

Sydney Trains started train operations as a legal entity on 1 July 2013 and was accredited as both 
a rail operator and infrastructure manager under the Rail Safety National Law (NSW) No. 82a. It 
inherited a number of staff, documents, systems, assets, responsibilities and duties from the 
previous operator, RailCorp. RailCorp, as an entity, remains the owner of real property, rail 
infrastructure and rolling stock, but its functions as operator and maintainer of metropolitan and 
interurban rail passenger services were transferred to Sydney Trains and another government 
agency, NSW TrainLink, for regional services.  
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Environmental information 
At 0900, on the day of the accident, the temperature was recorded at Richmond as 23.1°C. The 
overnight minimum temperature was 16.3°C. The nearest Bureau of Meteorology automatic 
weather station (AWS) was located at RAAF Base Richmond, about 3 km east of Richmond 
Station. 

The previous four days all recorded a maximum temperature over 35°C and the temperature on 
the day of the accident eventually reached 42°C (five hours after the accident). 

Sunrise on the day of the incident was at 0539 and it was a fine morning. The sun was behind and 
on the right-hand side of the train. The position of the sun was determined not to have affected the 
driver’s visibility. 

There had been no rain recorded at Richmond Station in the 11 days prior to the incident. 

Train crew 
The train crew were both Sydney Trains employees. The driver was based at the Blacktown depot 
while the guard was based at the Richmond depot. Both lived in nearby suburbs and drove to 
work with less than 20 minutes’ travel time to work. 

The driver was an experienced driver who started as a guard in 2005 and progressed to become 
a metropolitan train driver in 2007. He had been as passed as medically fit in February 2014 and 
was not due to be reassessed until 2019. He was familiar with the route and had been qualified to 
drive Waratah sets since 2013.  

The guard was an experienced guard, having started as a guard in 1985 and became a trainer 
guard in 2003. He was familiar with the route, being based at Richmond for 20 years, and had 
been qualified on Waratah sets since 2014. 

Train information 
The train involved in the incident was called a Waratah train, also known as an A-set. Each 8-car 
Waratah set has a designated number, all beginning with the letter A. The train involved in the 
incident was A42. Sydney Trains operate the A-sets which are leased to Sydney Trains by 
Reliance Rail Pty Ltd under a Rolling Stock Manufacture Contract with Reliance Rail, a 
Downer/Hitachi Joint Venture was responsible for the design, manufacture and commissioning of 
the Waratah trains and train simulators. Under a Through Life Support Contract with Reliance 
Rail, Downer is responsible for the through life support of the Waratah trains, the Auburn 
maintenance centre and train simulators (Figure 5). 
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Figure 5: Rolling Stock PPP Contract Structure 

 
This figure shows the structure of Reliance Rail.  
Source: Reliance Rail website, Waratah delivery structure 

There are 78 A-sets in total, all are maintained at Auburn, in western Sydney. These trains first 
entered service on the NSW rail network in 2011, and the final set was delivered in May 2014. 
A42 came into service in May 2013. 

A42 was a double-deck electric multiple-unit train, consisting of an eight-car set. It had a driving 
car at each end, two motor cars located next to each driving car, and two trailing cars in the centre 
of the train (Figures 6 and 7).  

Figure 6: A42 at Richmond Station post-collision 

 
Source: ATSB 

http://www.reliancerail.com.au/Page/Waratah+Trains/Delivery+Structure.aspx
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Figure 7: Waratah A-set car types 

 
Source: Sydney Trains with annotations by ATSB 

An eight-car Waratah set has a seated-passenger capacity of 896. The train width is 3035 mm, 
the height is 4410 mm, and each car is approximately 20 m in length. The total length of the train 
is approximately 163 m. It has a tare mass of approximately 407 t, a gross mass of 558 t. The 
Waratah was designed to be able to be operated at 130 km/h, although its maximum speed is 
restricted to 115 km/h. The train has a regenerative braking system with blended electro-
pneumatic wheel-mounted disc brakes. The bodies of the cars are stainless steel with composite 
train ends.  

The previous 30-day train examination was conducted on 27 December 2017 and the train was 
deemed fit for service. The train preparation certificate for A42 issued by Downer at the Auburn 
Maintenance Facility on 22 January 2018 stated the train was functioning as designed, and found 
the train fit for service. 

Track and infrastructure information 
The track structure between East Richmond and Richmond consisted of 60 kg/m rail fastened to 
concrete sleepers with a bed of rock ballast. The track approaching Richmond Station had a 
falling gradient of 1:77 from about the RD 5 signal to just past the start of Platform 1, where the 
track grade transitioned to 1:660 into the buffer stop.  

Track inspections showed no evidence of obvious track defects or misalignments. The track 
geometry measurements carried out before and after the collision found the track to be within 
tolerances and of sound alignment. 



› 11 ‹ 

ATSB – RO-2018-004 
 

 

Richmond Station is the terminal stop on the Blacktown to Richmond single bi-directional line. This 
standard gauge railway line was opened in 1864. It is a branch line of the Main Western line. This 
electrified line is predominantly used by passenger trains and is a single track for much of its 
length. The line is duplicated at multiple positions along the track. Passing loops also exist at 
various stations, allowing for trains to pass. 

Train movements on the Richmond line are controlled by Sydney Trains under network rule NSY 
500 Rail Vehicle Detection system. This system of safeworking prescribes the rules used in axle 
counter territory and continuously track-circuited territory on the network. Train movements on the 
metropolitan network, including the Richmond line, are authorised by a Train Controller from the 
Rail Management Centre in Sydney. These movements are controlled in conjunction with local 
signal control rooms. At the time of the incident, the movements for Richmond were controlled by 
the Area Controller located in the Blacktown signal box. Both the Rail Management Centre and 
the Blacktown Signal Box are now in the Rail Operations Centre at Green Square.  

Richmond Station consists of an island platform, incorporating Platform 1 and 2, which has an 
effective length of approximately 168 m4. A dead-end line runs on each side of this island 
platform. A third dead-end siding line (The Up5 storage siding) is used to stable trains for storage 
purposes. All three lines were terminated with an identical buffer stop involved in the incident. 

The single line from East Richmond Station to Richmond Station curves to the right for 160 m 
before straightening after the Moray Street pedestrian crossing. Once past this crossing, the line 
diverges into three separate lines to Platform 1, Platform 2 and the Up storage siding line. There is 
a clear line of sight to the buffer stop for Platform 2. The buffer stop also had a functioning light 
signal, which displayed a red light, centrally located on top of the buffer stop (Figure 8).  

Figure 8: Platform 2 buffer stop of Richmond Station 

 
This diagram shows the post-collision damage to the buffer stop on Platform 2, details at Richmond Station, and the light signal attached 
to the buffer stop. 
Source: ATSB 

                                                      
4  The effective length of the platform was measured from the Up end of the platform to the head of the buffer stop ram. 
5  Down lines typically carry train movements away from Sydney, Up lines towards Sydney. 
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A signal, RD5, and an interlocking set of points permits trains to travel straight ahead along the 
Platform 2 line, as was the case the morning of the incident, or to be diverted onto one of the other 
two lines. 

The permissible posted speed for trains travelling in the section from East Richmond Station to 
Richmond Station is 50 km/h. At the time of the accident, there were no temporary speed 
restrictions in place in the section from East Richmond to Richmond. 

The three buffer stops at Richmond Station were all of the same energy-absorbing design. Sydney 
Trains indicated that the buffer stops were installed in the early 1990s. They all had bodies 
constructed from steel-reinforced concrete with two oleo-type 15 MMO-2000-0104 hydro-
pneumatic rams bolted to the face of the buffer stop. These rams were designed to assist in 
absorbing the energy of a collision with a train. 

This type of buffer stop was a minority type on the Sydney Trains network, with the majority being 
of a fixed timber design. A high percentage of critical locations utilise energy-absorbing designs. 

The last examination done on the Richmond Platform 2 buffer stop was by Sydney Trains on 2 
April 2017. The buffer stop examination report did not list any defects or make any comment about 
its condition. The next scheduled examination was on 16 November 2020. 

The overall dimensions of the L-shaped buffer stop was 6.45 m long, 3.5 m wide and 4.1 m high. 
The end stop portion of the buffer stop was steel-reinforced concrete, protruding 1.6 m vertically 
from the ground. The majority of the mass of the buffer stop was below ground level. The 
engineering approval drawing for the buffer stops at Richmond Station was dated 26 February 
1991. 

The hydro-pneumatic rams had a metal tag affixed to the end plate dated 3 September 1991 
(Figure 9). These rams extend approximately 1.1 m from the face, with a hollow tubular area cast 
into the concrete behind the rams so that under impact they can collapse into this tube.  

Figure 9: Buffer stops, Platform 1 and Up storage siding, Richmond Station 

 
This diagram shows the buffer stops at Richmond Station on the Up storage siding line (right) and Platform 1 line (left), the insert shows 
the identification tags on one buffer stop. 
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Source: ATSB 

Rail head and train wheel inspection 
Leading up to the platform and under the train, the rail head was inspected for evidence of 
contaminants such as woody or leaf material, oils, grease, corrosion products, metals and other 
particles. The railhead appeared to have no significant degree of contaminants present.  

There have been previous buffer stop collisions where contaminants have caused poor adhesion 
at the contact point between the train’s wheels and the railhead. The investigation determined this 
was not the case at Richmond. 

Previous incidents  
There have been a number of serious incidents involving passenger trains colliding with buffer 
stops, both in Australia and overseas.  

The most significant recent Australian incident occurred on 31 January 2013, where a passenger 
train, T852, failed to stop at the Cleveland Station platform, in Brisbane, Queensland. The train 
collided with the buffer stop, the platform, and the station building at a speed of 31 km/h. A 
number of people were treated for minor injuries and transported to hospital for further 
examination. 

The ATSB’s investigation into the Brisbane accident found that local environmental conditions had 
resulted in the formation of a contaminant substance on the rail running surface. This caused poor 
adhesion at the contact point between the train’s wheels and the rail head. The braking 
effectiveness of train T842 was reduced as a result of reduced adhesion and the train was unable 
to stop before hitting the buffer stop. It was found that Queensland Rail’s risk management 
processes prior to the accident had not adequately assessed, recorded, managed and 
communicated the risks associated with operating trains on their network under low adhesion 
conditions.6  

Later that year, on 16 September 2013, an eight-car V-set interurban passenger train collided at 
low speed with a buffer stop at Platform 10, Sydney Terminal. As the driver approached the buffer 
stop at the end of the platform, he misjudged the brake application. This brought his train to a 
stand just prior to the buffer stop. The driver then engaged power and increased the train speed to 
10 km/h. Due to the close proximity of the buffer stop and the driver’s application of the slower-
acting automatic air brakes, the train collided with the buffer stop. There were no injuries to the 
passengers or the driver. An investigation found that the contributing factors to the collision was 
train management by the driver and electro pneumatic (EP) braking abnormalities. These 
abnormalities were experienced earlier on the trip and prompted the driver to switch off EP 
braking and run under the conventional air brake system. 

On 6 December 2016, Sydney Trains’ passenger service 625H collided with the buffer stop at the 
end of No.2 Platform at Cronulla when terminating. The Tangara train pushed the friction-type 
buffer stop back approximately 2 m. There were no injuries to the train crew or passengers on 
board the train. The investigation found that low adhesion caused by wet weather and rail 
lubricator grease contributed to the train not stopping as the driver expected. 

Other buffer stop collisions have occurred at Sydney Terminal on 27 October 2017, 22 December 
2017, and 18 February 2018. These three collisions all occurred at low speed with drivers 
misjudging the approach to the end of the platform. No injuries occurred and minor to nil damage 
was reported as a result of these incidents. 

Overseas, in the US, two significant buffer stop incidents occurred: one in 2016 and one in 2017. 
On 29 September 2016, at Hoboken, New Jersey, an accident on the New Jersey Transit railroad 
                                                      
6  ATSB rail investigation report (2013). RO-2013-005. Collision of passenger train T842 with station platform at 

Cleveland, Queensland. Published 20 December 2013. 
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killed one person, injured 110, and resulted in major damage to the station. On 4 January 2017, 
an accident on the Long Island Rail Road at the Atlantic Terminal in Brooklyn, New York, injured 
108 people. Both accidents involved passenger trains that struck buffer stops and crashed into 
stations. The US National Transportation Safety Board (NTSB) investigation determined that the 
major contributory factor in both accidents was driver fatigue resulting from undiagnosed severe 
obstructive sleep apnea.7 

Safety actions implemented 
A number of organisations have advised the ATSB that, in response to this incident, the following 
proactive safety actions have been implemented: 

Sydney Trains 
Richmond Station 
• A temporary speed restriction of 20 km/h, from East Richmond (60.200 km) to the buffer stops 

was put in place after the incident. Circuitry alterations were implemented so that the train stop 
on RD5 would provide a speed check at that point. Buffer stop redesign measures have been 
completed to meet compliance with the NSW Asset Standards Authority (ASA) buffer stop 
standard.8  

• The new Platform 1 buffer concrete block was installed in April 2019. The Platform 2 buffer 
concrete block is planned for installation in January 2020. The buffers are planned for 
installation in February 2020.   

• Sydney Trains has completed a signalling upgrade at Richmond, including intermediate train 
stops to control the approach speed. Planning has commenced for a platform extension at 
Richmond. Construction is expected to be completed in 2020. 

Other locations and network-wide recommendations 

• The remaining high-risk category locations (Central Platform 9, Macarthur, Carlingford) were 
assessed and speed reductions have been introduced in the short term to reduce the level of 
risk at these locations. Further control measures including intermediate train stops are being 
evaluated for installation at Macarthur and Central Platform 9 as part of the annual works 
program for 2019-2020. No further risk mitigation measures have been implemented at 
Carlingford due to the imminent closure of this line in January 2020.  

• Sydney Trains’ Asset Management Division has incorporated a program to assess and where 
appropriate upgrade buffer stops in its Annual Works Program, utilising the Buffer Stop Risk 
Index Prioritisation modelling for implementation sequence. Liaised with ASA to improve the 
process for issuing new infrastructure and rolling stock standards, adding a process where, 
through stakeholder consultation and risk assessment, existing equipment and its interfaces to 
the new standard/strategies are reviewed. 

• Sydney Trains have created a centralised database for equipment concession against the 
issued ASA standards.  

Downer  
• Downer have undertaken investigations into the performance of the A-set in the Richmond 

incident. They have also completed mathematical crash modelling to provide better 
understanding of the Richmond collision with respect to the design’s ability to manage crash 
energy levels. 

                                                      
7  National Transportation Safety Board (2017) Special Investigation Report, End-of-track collisions at Terminal Stations 

Hoboken, New Jersey, 29 September, 2016 and Atlantic Terminal, Brooklyn, New York, 4 January 2017. NTSB/SIR-
18/01.  

8  T HR TR 25000 ST Buffer Stops, version 1.0, issue date: 10 July 2017. 
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Transport for NSW 
A network-wide Automatic Train Protection project is underway. This, among other features, will 
provide speed control for electric passenger trains approaching buffer stops. 
The ASA reviewed their buffer stop standard and updated it with a technical note9 to include the 
following amendments:  
• An explanation of the speed-related risk criteria to be considered during the buffer stop design 

stage.  
• Amendments to the maximum allowable deceleration rate for lighter weight rolling stock while 

complying with the allowable impact force requirements. 
• Amended maximum allowable impact force requirements that the newer generation trains can 

withstand with minimal damage or injury. 
  

                                                      
9  ASA Technical Note –TN 033:2018 Amendments to T HR TR 25000 ST Buffer Stops, version 1.0. Issue date 21 

December 2018. 
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Safety analysis 
Introduction 
On Monday 22 January 2018, train A42 approached Richmond Station with a train crew 
comprising a driver and a guard and with 24 passengers on board. The train entered the platform 
under the posted speed limit of 50 km/h but did not slow as expected and collided with the buffer 
at an estimated speed of 26 km/h. The evidence obtained from the train’s event recorders confirm 
that the driver did not have any input to the controls for the period of 22 seconds from 0951:06 to 
0951:28.  

The buffer stop collision was the result of a lack of braking input by the driver as the train 
approached the buffer stop on Platform 2 at Richmond Station. The analysis section of this report 
explores the human factors surrounding the driver’s performance and likely reasons for his lack of 
braking input. 

The buffer stop withstood the impact of the collision and prevented the train from continuing into 
the street. The two hydro-pneumatic rams positioned on the front of the buffer stop were not 
aligned with any structural element on the front of the train, this meant they had little or no effect in 
the absorption of energy from the collision.  

Other elements discussed in the analysis section include: 

• driver safety systems 
• buffer stops 
• crashworthiness and crash energy management systems (CEMS) 
• emergency response management 
• management of safety risks. 
The following elements were excluded from further analysis: 

• the train’s braking and control system 
• track adhesion and track-related issues 
• signalling and train control issues 
• the actions of the guard.  

Driver issues 
There is a risk with the operation of any vehicle that the operator may perform in a sub-optimal 
way. On passenger trains, there are many procedural and engineering defences put in place to 
mitigate this risk. These defences include: training, rostering, vigilance devices, operator enable 
(deadman) systems, train stop/trip gear systems, and the guard. The introduction of technology 
such as Automatic Train Protection in future will provide an additional defence. 

The driver of A42 was interviewed by the ATSB on two occasions and was questioned closely 
about the events of that day, his previous shifts, and any aspect that may have potentially affected 
his behaviour on the day of the collision. The driver stated that he was feeling well and everything 
was normal leading up to, and during, the shift. He said he was well-rested, had slept well before 
his shift, had eaten normally, was hydrated and was feeling comfortable in the cab of the train. 
The driver had just had a break at Blacktown station less than an hour before the incident. 

The driver was certified as medically fit in accordance with the National Standard for Health 
Assessment of Rail Safety Workers (Health Assessment). Under this standard, rail safety workers 
such as the driver must have a valid certificate of fitness to perform rail safety work. The driver last 
had his category 1 medical assessment in February 2014. He was passed as ‘Fit for Duty – 
unconditional’. This certificate was valid until April 2019. In addition to this compulsory medical, 
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the driver said he had a voluntary annual medical check with his local general practitioner. At the 
initial ATSB interview in February 2018, the driver stated that he was a person in good health, 
using no medication, with no previous history of blackouts or sleep disorders. 

The health assessment standard covers a wide range of medical conditions that may impact on 
safe working performance. It seeks to provide guidance to support consistent assessment and 
decision-making. It is reviewed approximately every 5 years to ensure the medical criteria are up 
to date with the latest knowledge and research. The areas of interest to this investigation are 
contained in part 18 of the standard – ‘Conditions causing sudden incapacity or loss or situational 
awareness’. The following are the sub-headings for this part: 

• Blackouts 
• Cardiovascular conditions 
• Diabetes 
• Neurological conditions 
• Psychiatric conditions 
• Sleep disorders 
• Substance misuse and dependence.10 
The investigation considered the following were the most likely reason for the driver’s lack of input 
to the braking controls as he approached the buffer stop: 

• the driver experienced a blackout 
• the driver had a microsleep due to fatigue impairment 
• the driver was inattentive or distracted. 
Due to the lack of any CCTV inside the cab, the investigation could not conclusively determine 
what happened to the driver. The following is an analysis of the likely reason for the lack of 
braking input by the driver as the train approached the buffer stop. 

Blackout due to an undiagnosed medical condition 
A blackout is described as an unpredictable, spontaneous loss of consciousness. The National 
Standard for Health Assessment of Rail Safety Workers states that ‘blackouts or pre-syncope may 
indicate an underlying medical condition (e.g. seizures, diabetes, cardiovascular condition, a sleep 
disorder)’.11 It is possible that the blackout was related to the obstructive sleep apnea that the 
driver was diagnosed with after the incident. As described previously, the medical testing 
conducted on the driver after the event found no abnormalities with the driver’s cardiological or 
neurological condition. 

One type of blackout is termed ‘syncope’. This temporary loss of consciousness is usually related 
to insufficient blood flow to the brain. It is commonly referred to as fainting or passing out. It often 
occurs when blood pressure is too low and the heart does not pump enough oxygen to the brain.  

‘Fainting is a common problem, accounting for 3% of emergency room visits and 6% of hospital 
admissions. It can happen in otherwise healthy people. A person may feel faint and lightheaded 
(pre-syncope) or lose consciousness (syncope).’12 

The driver’s original description of the event leading up to the collision was similar to that which 
can occur with low blood pressure. In the crucial time approaching the station the driver stated that 
he ‘felt dark, dizzy and powerless, and that my body had no control over me. I felt complete black, 
dark. I don’t know what happened to me after that.’ He also said that when he regained his senses 
he saw the buffer stop about one car-length away, and applied the brakes to maximum.  

                                                      
10  National Transport Commission (2017). National Standard for Health Assessment of Rail Safety Workers. p.72. 
11   National Transport Commission (2017). National Standard for Health Assessment of Rail Safety Workers. p.72. 
12  https://www.webmd.com/brain/understanding-fainting-basics#1  

https://www.webmd.com/brain/understanding-fainting-basics#1
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It is considered possible that the driver experienced a pre-syncope or syncopal episode. It is 
reported that up to 50% of the population will lose consciousness at some point in their life due to 
a syncopal episode.13 Sydney Trains agrees with an independent medical assessment that, 
considering all of the medical information, the most likely diagnosis was a blackout of 
undetermined cause. 

Microsleep due to fatigue impairment 

In the context of human performance, fatigue is a physical and psychological condition primarily 
caused by prolonged wakefulness and/or insufficient or disturbed sleep.14 Fatigue can have a 
range of influences on performance, such as decreased short-term memory, slowed reaction time, 
decreased work efficiency, reduced motivational drive, increased variability in work performance, 
and increased errors of omission.15 Transport accident investigation agencies have identified 
fatigue impairment as a contributory factor in many accidents and incidents. 

Extensive medical tests, including neurological and cardiology tests, were conducted on the driver 
following the incident. One test detected a problem. A sleep test (a home polysomnography sleep 
study) conducted in July 2018 led to the driver being diagnosed with moderate obstructive sleep 
apnea. This was followed by an in-clinic test on 8 October 2018 that showed mild obstructive 
sleep apnea and a maintenance of wakefulness (MWT) test conducted on 9 October 2018 that 
was normal, with no suggestion of sleepiness. He was advised by his medical practitioner to use a 
continuous positive airway pressure (CPAP) machine. In December 2018, the driver reported that 
since using the CPAP machine, his overall feeling of well-being had improved. He was unable to 
say if he was feeling more alert although he had not resumed train-driving duties.  

Research has shown that sleep apnea increases the accident rate in motor vehicle drivers 
between two and seven times due to sleepiness and/or due to altered blood gases and hypoxia 
affecting mental function.16 Obstructive sleep apnea involves repetitive obstruction to the upper 
airway during sleep. Throughout the sleep period, the breathing of a person can stop from a few 
seconds to over a minute. These episodes, which can occur many times during the night, are 
known as apneas. The person can be unaware that it has happened during the night but will 
frequently wake feeling tired. An increase in sleepiness can result from obstructive sleep apnea.17 

It is possible that the driver was fatigued and experienced a microsleep. A microsleep is a very 
short period of sleep when the brain disengages from the environment and slips uncontrollably 
into light non-REM sleep.18 Microsleeps have been shown to correlate with periods of low 
performance and they occur most frequently during conditions of fatigue.19 It is possible the driver 
experienced a microsleep due to an increased level of fatigue due to a combination of obstructive 
sleep apnea, a cumulative lack of sleep, and an early morning shift start.  

Even though the driver stated that he felt normal on the day of the incident, research has shown 
that patients with sleep disorders may not be aware of an impending sleep episode20 and that 
there may be a lack of realisation by a sleep-deprived person as to how fatigued they actually 
are.21 This driver had not reported any clinical features of sleep apnea prior to the incident and 

                                                      
13  Stichting Elilpesie Instellingen Nederland (SEIN) (2019) The blackout checklist. 
14  National Transport Commission (2008). National Rail Safety Guideline. Management of Fatigue in Rail Safety Workers. 

p.5. 
15  Battelle Memorial Institute (1998). An Overview of the scientific literature concerning fatigue, sleep, and the circadian 

cycle. Report prepared for the Office of the Chief Scientific and Technical Advisor for Human Factors, United States 
Federal Aviation Administration. 

16  National Transport Commission (2017). National Standard for Health Assessment of Rail Safety Workers. p.142. 
17  Pack A, Pack AM, Rodgman E, Cucchiara A, Dinges DF, Schwab CW. Accident Analysis and Prevention. Vol. 26. 

(1995) Characteristics of crashes attributed to the driver having fallen asleep. p.769. 
18  Civil Aviation Safety Authority Australia (2014). Bio-mathematical fatigue models – Guidance document. p.64 
19  Transportation Safety Board of Canada (2014) Guide to investigating sleep-related fatigue. p.25. 
20  Desai AV, Ellis E, Wheatley JR, Grunstein RR. Medical Journal of Australia. Vol. 178. (2003). Fatal distraction: a case 

series of fatal fall-asleep road accidents and their medicolegal outcome. p.339. 
21  Folkard S, Robertson KA, Spenser MB (2006). The development of a fatigue / risk index for shiftworkers. p.12. 
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had no high-risk factors, such as a body mass index greater than 40, which would trigger a referral 
for a sleep study.  

Sydney Trains, like other Australian rail operators, is not required to automatically send all 
employees in safety-sensitive positions for a sleep study. The National Health Standards for 
Health Assessment of Rail Safety Workers specifies certain criteria for sleep study referral and the 
driver of A42 did not meet these criteria. 22 

Another factor that increased the likelihood of a microsleep was that the driver had been awake 
since 0215, more than 7 ½ hours prior to the time of the incident. It has been reported that both 
feelings of fatigue and the occurrence of microsleeps increase as duty time progress.23 The 
National Transport Commission recognises that the duration of a duty period is a contributor to 
fatigue-impaired work performance. 24 Early morning shifts are associated with high levels of 
fatigue and this can affect performance for the duration of the shift.25 Also, some research has 
shown that shifts ending around the time of this accident show an increase in mental tiredness for 
train drivers.26 

The driver was rostered to have 3 days off (Friday, Saturday and Sunday) before the incident day, 
Monday. Instead, he was phoned on Friday by the roster clerk and asked to work an overtime shift 
the next day, Saturday. He said he worked from 1500 to 2300 on Saturday and went to bed at 
0200 in the early hours of Sunday morning. He awoke at 0830, having slept approximately 6 ½ 
hours.  

The driver said he was used to early morning shifts and he would rather have not worked the 
afternoon/evening shift on Saturday. This change in shift meant that he changed his sleeping 
pattern from going to bed in the late evening (2130-2200) for the previous 5 days, to going to bed 
in the early hours of Sunday morning. 

On Sunday, instead of resting at home and taking the opportunity for an afternoon nap, the driver 
went shopping with his family from approximately 1300-1630. Originally, the driver thought that he 
had napped that afternoon but an analysis of mobile phone records showed otherwise. The driver 
went to sleep Sunday evening at 2000 and set an alarm for 0215. The driver had the opportunity 
for approximately 6 hours sleep the night before the accident, and 6 ½ hours sleep in the previous 
24-hour period. Research has shown that limiting sleep to six hours or less over successive nights 
can result in a deficit in performance27 and that sleep of only six continuous hours is associated 
with an elevated likelihood of a fatigue-related incident.28 It is suggested that the average amount 
of sleep required per 24-hour period for most people is approximately 8 hours.  

There were two opportunities for the driver to increase his sleep hours. Firstly, after he completed 
his Saturday shift at 2300 when he did not go to bed until 0200. It is accepted that often people 
need a period of time to wind down after work before going to bed, but the 3 hours taken this 
evening may have been detrimental. Secondly, during the day on Sunday, he did not take the 

                                                      
22  The NTSB, in their 2019 Most Wanted List, has targeted reducing fatigue-related accidents as a priority. It is noted that 

the Board has recommended the Federal Railroad Administration to require rail operators to screen employees in 
safety-sensitive positions for sleep apnea or other sleep disorders. National Transportation Safety Board. Most Wanted 
List of transport safety improvements 2019-2020. www.ntsb.gov/mostwanted 

23  UK Rail Safety and Standards Board (2004). Human Factors study of fatigue and shift work. Appendix 1: Working 
patterns of train drivers implications for fatigue and safety. p.66. 

24  National Transport Commission (2008). National Rail Safety Guideline. Management of Fatigue in Rail Safety Workers. 
p.5. 

25  Folkard S, Robertson KA, Spenser MB (2006). The development of a fatigue / risk index for shiftworkers. p.17 
26  UK Rail Safety and Standards Board (2004). Human Factors study of fatigue and shift work. Appendix 1: Working 

patterns of train drivers implications for fatigue and safety. p.65. 
27  Folkard S, Robertson KA, Spenser MB (2006). The development of a fatigue / risk index for shiftworkers. p.12. 
28  Stutts JC, Wilkins JW, Osberg JS, Vaughn. Driver Risk Factors for Sleep-related Crashes, Accident Analysis and 

Prevention, 2003. 
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opportunity to have an afternoon nap as he was in the habit of doing. Prophylactic napping has 
been shown to be beneficial in supplementing sleep time and reducing the effects of fatigue.29 

Rostering 

Sydney Trains’ rostering, fatigue-management and health policies were examined to determine if 
they contributed to the incident. The investigation found that while Sydney Trains had policies and 
systems in place to ensure that drivers were fit for duty and rostered in a manner to manage their 
fatigue levels, there were some inconsistencies with the rostering of this driver and Sydney Trains’ 
operating procedure for managing shift work and rostering.  

Sydney Trains’ operating procedure was to ‘make sure there are adequate breaks between shift 
cycles. Days off should be a minimum of two consecutive days’. Prior to the incident the driver had 
worked 5 consecutive days and then had a break of one day, worked another day, then had a one 
day break. 

Another rostering principle inconsistent with the driver’s roster was that start times should be 
consistent and move in a forward rotation. This driver had start times that moved from a regular 
morning start (0600-0700), to a single overtime shift that started at 1500, then to a very early 
morning start of 0312.  

Sydney Trains’ management systems provide guidance for management and employees to 
ensure there is an awareness of countermeasures in this area. The procedures are detailed and 
cover eventualities such as shift changes.  

Sydney Trains use a bio-mathematical fatigue modelling program known as the Fatigue Audit 
Interdyne (FAID) to assess the suitability of the roster for managing fatigue risk. Bio-mathematical 
models attempt to predict the effects of different working patterns on subsequent job performance, 
with regard to the scientific relationships between work hours, sleep and performance.30 The FAID 
score predicts the risk of fatigue associated with the opportunities provided by the organisation for 
an individual to obtain restorative sleep.31 Guidance suggests that scores between 80 and 100 
have a high fatigue likelihood. The FAID score for the driver on the day of the incident was 51. 
Other bio-mathematical scores were also calculated for the driver’s shift. These also indicated that 
the driver was in the low range for being at risk of fatigue. However, any bio-mathematical model 
cannot account for the hours of sleep actually achieved by individuals, nor for the quality of that 
sleep. 

Driver distraction / inattention 

Driver distraction and inattention are major contributing factors in accidents. While there are many 
differing definitions for distraction and inattention, for the purposes of this investigation the 
following definitions will apply:  

‘Distraction: a diversion of attention from the driving task that is compelled by an activity or event 
inside the vehicle.’32 External events outside the vehicle can also provide a distraction. 

‘Inattention: insufficient or no attention to activities critical for safe driving.’33  

It may be possible to be inattentive even where there is no distracting event.  

The driver said that he was not distracted by any radio calls or external events and was paying 
attention as he approached Richmond Station. He said that he had driven into this station on 
hundreds of occasions and knew that the approach to the buffer stop was a critical time to apply 
                                                      
29  Folkard S, Robertson KA, Spenser MB (2006). The development of a fatigue / risk index for shiftworkers. p.39. 
30  Dawson D., Noy YI, Harma M, Akerstedt T, Belenky G. (2011). Modelling fatigue and the use of fatigue models in work 

settings. Accident Analysis and Prevention, 43, p. 551. 
31  Ibid., p. 553. 
32  Senders JW. (2013) Driver distraction and inattention: a queueing theory approach. Driver distraction and inattention. 

Advances in Research and Countermeasures. Ashgate. p.55 
33  Regan MA, Strayer DL. (2014) Towards an understanding of driver inattention: taxonomy and theory. Journal of the 

Association for the Advancement of Automotive Medicine. 
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the brakes in order to come to a smooth stop. He said that he was not using his mobile phone, 
and the phone records confirm that no messages or calls were made or received in the time 
leading up to the event. There was no one else in the cabin with the driver. 

There is no evidence of distraction to the driver and in the absence of any in-cab CCTV footage, 
the investigation could only rely on the testimony of the driver and the recorded actions on the 
event recorder. On all occasions, from his initial conversations with the replacement guard, the 
train guard, and the police, to his formal interviews, the driver’s recollection was consistent: that he 
did not know what happened to him but experienced some kind of blackout.  

Previous driving behaviour 

The driver’s operation of the train and the performance of the train were analysed for the duration 
of the journey from Blacktown to Richmond. The driver’s actions were found to be generally in line 
with the performance standards set down by Sydney Trains. The only area of concern was the 
previously described over-speeding events where the driver exceeded the maximum speed for the 
section of track on two occasions. These infractions were for a few kilometres per hour above the 
limit for a few seconds.  

The driver’s train driving history was examined for any previous similar incidents since 
commencing driving trains. Since starting as a driver in November 2007, there were eight 
recorded incidents where the driver has either failed to stop at a station, overshot the platform or 
passed a signal at stop. A variety of reasons are recorded for these lapses: distracted, misjudged, 
lost situational awareness and lost concentration. On each occasion, Sydney Trains has 
counselled or coached the driver to be more vigilant and to maintain situational awareness. 
Sydney Trains was unable to say if this was an above-or below-average error rate for drivers. This 
investigation made no determination on the driver’s recorded error rate but includes it in the report 
for completeness. 

Driver safety systems 
Rail operators use a range of measures to reduce the risk of driver error. This section will focus on 
the technology-based devices that may have prevented or mitigated the effects of this collision. 
These devices include:   

• a vigilance control system 
• an operator enable system 
• a train stop and trip gear system 
• an automatic train protection system. 
The first three measures were already in use on the Sydney Trains network and on A42 at the 
time of the collision at Richmond. The last measure, automatic train protection, was not in use on 
the network at the time of the collision. 

ASA have published a standard for train (driver) safety systems.34 This standard applies to 
Sydney Trains and rolling stock operating on the Sydney metropolitan rail network. The standard 
covers onboard safety systems that protect train safety in the event of a failure in the manual 
functions of train operation, such as the driver becoming incapacitated approaching a buffer stop. 
Another ASA specification for passenger rolling stock driver safety systems provides greater detail 
for the application of these systems.35  

                                                      
34  Asset Standards Authority. Train (Driver) Safety System, T HR RS 00840 ST, v2.0, issued 4 November 2016. 
35  Asset Standards Authority. Passenger Rolling Stock Driver Safety Systems, T HR RS 20003 SP, v1.0, issued 3 July 

2015. 
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Vigilance control system 

This system supports driver alertness and is in place to ensure the driver is maintaining vigilance 
at the controls. The standard for train (driver) safety systems defines a vigilance control system as 
a ‘system that will react by bringing a vehicle or train to a stand if an acknowledgment input is not 
received within a specified time increment. On conventional vehicles with an automatic brake, the 
vigilance system will bring the train to a stand by directly venting the brake pipe to atmosphere’.36   

All Sydney Trains passenger trains have onboard task-linked vigilance devices which are set up to 
warn the driver and apply an automatic brake application if there is no acknowledgement by the 
driver in the vigilance time cycle. The acknowledgement tasks include: pressing the vigilance 
button, applying the horn, operating the windscreen wiper, operating the power/brake control 
handle, operating the headlights/fog lights and also depressing the operator enable pedal. For 
each of these tasks there are parameters applied to the detection. For example, if the control input 
for the vigilance is the headlights or the foglights, it can only be used for one reset of the cycle 
then another type of input must be used.  

The vigilance system is operational only at the active end of the train, so is only available for the 
driver and not the guard. It commences operation only when the power/brake control handle is 
moved out of the isolate position and when either the brake cylinder pressure is below 75% full 
service brake cylinder pressure or the speed is greater than 5 km/h. 

The vigilance system has a 30-second cycle; if the driver does not perform one of the tasks within 
the cycle then the vigilance penalty sequence begins. Firstly, a warning light flashes on the control 
board in front of the driver and on the vigilance button itself, the driver is required to acknowledge 
the visible warning within 5 seconds or the sequence will progress to the next stage. Then, during 
the next 5-second period, a bell also sounds and the driver is required to acknowledge within the 
5-second period or the sequence will progress to the automatic brake application. If no action is 
taken by the driver, an automatic brake application is initiated which cannot be released until 3 
seconds after the train comes to a stand.37 Following this, within the next 30 seconds, the driver 
can release the automatic brake by pressing the vigilance button. In the event of the driver failing 
to press the vigilance button within 30 seconds of the reset indicator, a distress message will be 
sent via the train’s radio to train control and the train’s park brakes will be applied (Figure 10).  

                                                      
36  Train (Driver) Safety System, Op.Cit. p.10. 
37  Sydney Trains / Downer, Brakes RTM00001-100B. p.61. 
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Figure 10: Vigilance control system timing sequence 

 
This figure shows the timing sequence of the train’s vigilance system. 
Source: ASA Passenger rolling stock driver safety system, modified by ATSB 

Following the incident, the vigilance system on A42 was tested by a Sydney Trains brake 
engineer. This test was witnessed by ATSB investigators. The vigilance control system cycles 
were timed and tested and performed as designed. All elements of the vigilance control system 
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were operational and the event recorder showed that the driver was using the system throughout 
the journey from Blacktown that day. 

The critical time that the driver was inactive on approach to the buffer stop was approximately 22 
seconds. The investigation determined that this period of inactivity by the driver, with a possible 
loss of consciousness, occurred between a 30-second vigilance cycle. 

Operator enable system 

Another driver safety system is the operator enable system. Its main function is to detect that the 
driver is at the controls while the train is operating. An advance design on what in the past was 
known as a ‘deadman’ system which refers to its purpose of braking the train if the driver became 
incapacitated or deceased. The standard for train (driver) safety systems defines an operator 
enable system as ‘a device that applies emergency brakes and disables traction power if a 
continuous control input required of the driver or operator is interrupted or not detected’.38  

The Special Commission of Inquiry’s report into the Waterfall train derailment in 2003 discussed 
the deadman system. It found that: ‘in New South Wales, prior to the Tangara, there were no 
electric trains with a deadman foot pedal device. The then-existing electric train fleet had a single 
deadman feature on the power / brake handle that required downward pressure to be applied to 
maintain it in the set position.39 The current operator enable systems have advanced to a more 
sophisticated level than those used in the past and are designed to minimise circumventions. 

The functional and performance requirements for operator enable systems installed on passenger 
trains in New South Wales are outlined in an ASA specification.40 These specifications require that 
while a driver is driving a train, in either the sitting or standing position, the automatic brake 
application be suppressed by an operator enable pedal (OEP) operated in the normal operating 
range (or in vigilance acknowledge range), or by the rotation of an operator enable handle (OEH) 
(Figure 11). 

                                                      
38  Asset Standards Authority Train (Driver) Safety System, T HR RS 00840 ST, v2.0, issued 4 November 2016. p.9. 
39  McInerney, PA. (2004) Interim Report of the Special Commission of Inquiry’s report into the Waterfall  
40  Passenger Rolling Stock Driver Safety Systems, Op. Cit. p.10. 
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Figure 11: Driver safety systems 

 
This figure shows the location of the driver safety systems on A42. The insert shows the power / brake handle and the twist grip which 
acts as part of the operator enable system. 
Source: ATSB 

The operator enable system on Waratah trains consists of both an OEP and an OEH. The 
presence of both handle and pedal allows drivers to alternate between arm and leg muscle groups 
and give drivers the option to stand while driving.  

The OEP is also used as the driver’s footrest. The height of the pedal and surround can be raised 
or lowered by the driver. The angle of the surround is approximately 28° from horizontal which 
slopes towards the driver. The pedal has a normal operating position range of approximately 26° 
to 30° from horizontal. 

In order to enable traction and release the brakes, either the OEP must be depressed or the OEH 
power / brake handle twist grip turned approximately 20° clockwise. The power / brake handle 
needs to be in the forward or reverse position for this to operate. To operate the OEH a force of 
8 N (± 10 N) is required. The force specification is such that the force required to be applied shall 
not cause injury or discomfort taking into account the shift length the drivers are required to 
operate.   

There are three main stages to the OEP (Figure 12):  

• Released range: here the pedal is in the fully released position where no force is applied. 

• Normal operating range: the driver depresses the pedal into this range which activates the 
system and suppresses the automatic brake application. The force required to depress 
the pedal from the released range to the normal operating range is 50 N (±10 N). In order 
to hold the pedal in-line with the surround a force of less than 80 N is required. (This 
equates to a mass of approximately 8 kg).  

• Vigilance acknowledgement range: when the driver further depresses the pedal it links to 
the vigilance control system, vigilance is acknowledged and the automatic brake 
application suppression is maintained. The force required to depress the pedal from the 
normal to vigilance acknowledge range is 120 N (± 10 N). If the pedal is held in this range 
for more than three seconds, a second stage vigilance activation will occur and give an 
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audible warning. This mean the driver has 5 seconds to acknowledge using the vigilance 
button before an automatic brake application occurs. 

After East Richmond, the system did not detect a change in the driver’s application of the operator 
enable system. It is likely that once the driver applied the power/brake control handle to brake 
(39%) at 0951:06.1, he did not need to use the OEH and simply maintained pressure on the OEP. 
About 30 m before the train impacted the buffer stop, at 0951:28.5, the OEP indicated an 
increased force being applied to the pedal; this remained high until after the collision. It is likely at 
this point that as the driver of A42 realised the train was about to collide with the buffer stop, he 
braced himself for impact by increasing his leg force on the OEP. 

Figure 12: Operator enable pedal operating ranges 

 
This figure shows the side view of the main operating positions of the operator enable pedal on A42. 
Source: ASA Passenger rolling stock driver safety system, modified by ATSB 

Research has shown that it is possible to be in a semi-conscious state and still perform simple 
tasks. An investigation into a rail collision between two coal trains at Beresfield, New South Wales 
in 1997, discussed the issue of a driver not responding to signals. The report highlighted research 
into Automatic Behaviour Syndrome. The discussion of this syndrome may also explain the 
actions of the driver at Richmond.  

‘There are various forms of sleep on the sleep-wakefulness continuum, ranging from a state 
of drowsiness (stage 1 sleep) as a person transitions from wakefulness to sleep, through to 
deep sleep. Generally, a person woken from stage 1 sleep will not be aware that they have 
been asleep. Stage 1 sleep can occur as ‘microsleeps’, or may involve longer episodes of 
lowered alertness, referred to as Automatic Behaviour Syndrome (ABS). The Transportation 
Safety Board of Canada defines Automatic Behaviour Syndrome as: 

‘A state of fatigue in which we are essentially sleeping with our eyes open. While able to perform 
simple or familiar tasks, we are unable to respond quickly to more critical tasks and situations. In sleep 
lab studies, participants experiencing ABS show brain waves characteristic of sleep’. 

The potential for vehicle drivers to ‘sleep with the eyes open’ was referred to as long ago as 
1929 (Miles W. Scientific American June 1929, pp. 489-492). Recent scientific studies have 
confirmed that fatigued drivers can continue to drive while being asleep with the eyes open 
(Horne and Reyner 1998). In a US study, truck drivers were monitored for signs of sleep while 
driving normal deliveries on US public roads. Electroencephalogram (EEG) readings 
indicated that some drivers were continuing to drive while in stage 1 sleep for periods of up to 
20 seconds (Mitler 1998).’ 41 

Tests conducted following the incident confirmed that A42’s operator enable system, both the 
OEP and OEH, was functioning. The driver continued to operate the operator enable system 

                                                      
41  New South Wales Department of Transport. Independent Inquiry Report, Coal Train Collision, Beresfield, NSW, 23 

October 1997. P.22. 
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possibly due to automatic behaviour where he was still able to maintain with the required force on 
the OEP in the normal operating range.  

Train stop systems 

A train stop system involves a trip cock on the vehicle and a trip arm located trackside which, 
when engaged, directly initiates an emergency brake application (Figure 13).42 In NSW, train stop 
systems are fitted to multiple-unit passenger trains operating on the electrified lines.  

Figure 13: Signal train stop system 

 
This figure shows the trip arm next to signal RD5 at Richmond (left) and the trip cock on A42 (right). 
Source: ATSB 

There are three main categories of train stops: 

• Fixed train stops: at terminal platforms these operate as a permanent upright lever arm which 
trigger the emergency brake when struck by a train’s trip cock. 

• Signal train stops: located adjacent to a signal, the lever arm elevates when the signal is at 
stop and returns horizontal when the signal clears. 

• Intermediate train stops: located at a determined distance from a known location where a 
reduction of speed is required. A speed detection device controls the lever arm so that if the 
train speed is not reduced to the required level before reaching a predetermined point, the 
lever arm remains raised. 

The ASA standard for train (driver) safety systems defines the purpose of train stops and trip gear: 
‘to intervene and stop a train or vehicle fitted with trip gear if it fails to stop for a signal at stop (red 
signal aspect). When the train stop arm engages the trip cock, the associated valve directly vents 
the train or vehicle brake pipe to atmosphere, initiating the removal of (a cut in) traction power and 
an automatic (emergency) brake application on all vehicles within the train. The train stop is used 

                                                      
42  Rail Industry Safety and Standards Board (RISSB) (2010) Glossary of Rail Terminology. p.256. 
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at signals in conjunction with a red signal aspect and in areas where train speed is required to be 
externally controlled.’ 43 

The operating standard for rolling stock states that multiple unit passenger trains operating within 
the Sydney metropolitan rail network shall be fitted with trip gear equipment.44 All Sydney Trains 
passenger trains are fitted with trip gear at the front of the train. 

In 2005, an external engineering consultancy was commissioned by RailCorp45 to investigate and 
review overrun protection in the Sydney greater metropolitan area. RailCorp had identified 35 
terminal track locations that could involve passenger trains in overrun incidents. 

The 2005 report investigated and reviewed what overrun protection was in place and what options 
were available, and made recommendations to reduce risk. Richmond Station was one of these 
locations and, amongst other recommendations; the report recommended that intermediate train 
stops be installed at Richmond Platform 2. The report stated:  

‘the worst case scenario at this platform would be the brakes failing and the train impacting the buffer 
stop at a probable worst case speed of 40 km/h, …the current buffer would be overloaded and not 
survive impact.’  

The report stated that one of the options to reduce risk at Richmond Platform 2 was ‘to install two 
intermediate train stops, rated at 15 km/h and 8 km/h.46 The completed report was provided to 
RailCorp and there is documentation which suggests that a risk workshop was held by RailCorp 
on 8 April 2005. There is no record of any actions being undertaken as a result of this workshop 
and it appears that the recommendations pertaining to Richmond were not acted upon. 

In 2008, the same external engineering consultancy was commissioned by RailCorp to review the 
previous 2005 report and to assess the performance of overrun protection specifically at two 
stations: Richmond and Carlingford. The review found that a risk assessment model was applied 
to each station and ‘Richmond Platform 2 was rated as highest risk of injury and fatality due to 
train overrun’.47 The report stated: ‘the worst case scenario at this platform would be the brakes 
failing and the train impacting the buffer stop at a probable worst case speed of 25 km/h, the 
current advertised approach speed. The current buffer would be overloaded and not survive 
impact.’ The report recommended that one of the options to reduce risk at Richmond Platform 2 
was ‘to install two intermediate train stops, rated at 25 km/h and 15 km/h.48  

Sydney Trains provided these reports to this investigation. It appears that the details and safety 
recommendations from these reports were not included as part of Sydney Trains' program for 
asset improvement. The actions to improve the risk profile by installing intermediate train stops at 
Richmond and Carlingford were not implemented before the collision.  

Following the collision, Sydney Trains has reviewed the signal system at Richmond and 
implemented a signal control upgrade utilising two intermediate train stops and one fixed train stop 
to reduce the risk of a train overshooting the platform at Richmond Station. The installation 
occurred in April 2019, 15 months after the collision. This train stop would trigger a brake 
application if a train speed exceeds 25 km/h approaching the train stop.  

On the day of the collision, at signal RD5, the approximate speed of A42 was 47 km/h. The 
shortcoming of an intermediate train stop is that it is still possible for a driver to increase speed 
once past the signal and also for the driver to become incapacitated past the train stop. Another 
                                                      
43  Asset Standards Authority. Train (Driver) Safety System, T HR RS 00840 ST, v2.0, issued 4 November 2016. p.20. 
44  Asset Standards Authority Standard RSU 100 Series – Minimum Operating Standards for Rolling Stock – General 

Interface Requirements 7.5.1. p.66. 
45  RailCorp was the precursor organisation to Sydney Trains. Sydney Trains, also a NSW Government agency, started 

operating all suburban services in the Sydney metropolitan area from 1 July 2013. 
46  Sinclair Knight Merz (SKM) (2005) Report on existing overrun protection at terminal tracks and proposals for upgrades. 

p.32. 
47  Sinclair Knight Merz (SKM) (2008) Buffer stops at Richmond and Carlingford.p.4. 
48  Op. Cit. SKM report (2005).  p.32. 
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system to control train speed, Automatic Train Protection, was planned to be implemented at the 
time of the Richmond collision. 

Automatic train protection system 

The Automatic Train Protection system (ATP) is a system that monitors the train’s speed against 
the trackside target speed. It alerts the driver of a braking requirement and automatically applies 
train brakes if its speed significantly exceeds line speed parameters. It consists of on-train and 
trackside equipment that act independently of drivers and signallers (Figure 14). 

Figure 14: Automatic Train Protection 

 
This figure shows the functionality of the ATP system as the train approaches a buffer stop. 
Source: Transport for NSW 

The implementation of ATP on the Sydney passenger rail network was one of the 
recommendations of the Special Commission of Inquiry’s report into the Waterfall train derailment 
in 2003. It recommended that: ‘RailCorp should progressively implement, within a reasonable 
time, level 2 automatic train protection. Level 2 ATP systems provide automatic enforcement 
(slowing/braking) of authority (speed/location) if a train is behaving in an unauthorised way.’49  

The ATP project was first commenced by RailCorp in 2006 and was progressed until June 2012 
when responsibility for the delivery of the project was transferred to TfNSW. 

All recommendations from the Special Commission of Inquiry were tracked, initially by the NSW 
rail regulator, the Independent Transport Safety Regulator (ITSR), and since 10 March 2017, the 
national rail regulator, the Office of National Rail Safety Regulator (ONRSR). ONRSR reports 
publically on open recommendations.  

The report into the implementation of the NSW government’s response, published in April 2018, 
provided a comprehensive update of the progress of the installation of ATP (Table 2). It stated: 
‘With the exception of the Tangara fleet, the forecast completion date for the delivery of TfNSW’s 
ATP project is December 2020 and full deployment is expected in May 2021 with the anticipated 
completion of the Tangara fleet upgrade’.50 

                                                      
49  McInerney, PA. (2004) Interim Report of the Special Commission of Inquiry’s report into the Waterfall rail accident. 

p.32. 
50  Office of the National Rail Safety Regulator (2018) Implementation of the NSW Government’s response to the Final 

Report of the Special Commission of Inquiry’s report into the Waterfall rail accident.  p.9. 
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Table 2: Forecast completion dates for Automatic Train Protection 

 
Source: ONRSR 

The installation of ATP on Waratah (A-sets), if installed at the time of the buffer stop collision, 
would likely have prevented the train colliding with the buffer stop at Richmond. The system would 
have detected that the train was approaching the buffer stop at unauthorised speed and applied 
the train’s brakes automatically. 

In-cab audio and video recording 
The cause of the driver being unresponsive at the controls for a period of time leading up to the 
collision may have been resolved if the driver’s cab was fitted with an inward-facing camera 
recording the driver’s actions. The video may have shown what the driver was doing and his state 
of consciousness leading up to the collision. The presence of a camera would not have prevented 
the collision, but would have assisted in the post-incident analysis. An audio recording, 
synchronised with the camera, may have provided additional information about the driver’s 
actions, and possible alarms or sounds inside the cab. Having audio and video recording allows 
investigators to eliminate, early in the investigation, potential contributory factors such as mobile 
phone-use or other distraction-type events. 

Waratah trains are fitted with 64 internal and 34 external cameras (including 16 cameras on each 
side plus one camera at each end). Only one of the end cameras faces forward (at any time) with 
the other rearward. They both record. The guard cannot select to view the images from the end of 
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set cameras. At approximately 250 m prior to the station, the guard’s surveillance screens 
automatically switch to display external side camera views to display entry into the platform. The 
forward-facing cameras have proved especially useful for investigators in determining what has 
happened during events such as: derailments, SPADs, level crossing incidents and collisions. 
Forward-facing video of the buffer stop collision was available and proved useful in analysing the 
event. 

There is no current requirement for rail operators to fit inward-facing cameras or voice-recording 
devices in driver’s cabs. In NSW, there is rail safety compliance code for data loggers which sets 
out minimum requirements for data loggers fitted in rolling stock.51 While it does not specify 
inward-facing cameras, it does mention that operators may consider cab-based forward-looking 
video recording. Many rail operators have already fitted, of their own volition, forward-looking 
video cameras. 

A precedent for in-cab recording of drivers exists in the NSW bus transport environment where 
inward-facing cameras and audio-recording microphones are installed to record driver’s actions. 
Metropolitan bus operators are required under the Passenger Transport Regulation 2017 to 
ensure each bus in the fleet is fitted with an approved security camera system.52 The requirement 
is that, along with other cameras, a camera is installed in the driver’s cabin and is directed towards 
the driver, including one microphone in the vicinity of the driver. These requirements are specified 
under Transport for NSW bus procurement contracts. Protections against use for unauthorised 
purposes exist in the regulation. The use of these recordings has proved invaluable in determining 
the cause of many accidents, particularly driver incapacitation incidents, and has played an 
important role in improving operational safety. 

In the USA, the NTSB have long advocated the use of recording devices inside locomotive cabs 
as an aid in accident investigations and for use by transportation management in efficiency testing 
and performance monitoring programs. Their initial recommendation for voice recorders came as 
a result of their investigation of a 1996 accident between a Maryland Rail Commuter train and an 
Amtrak train near Silver Spring Maryland. There were 11 fatalities including three operating 
crew.53 

The NTSB have reiterated and enhanced this recommendation in numerous accident 
investigations since. In 2010, the NTSB, in a safety recommendation report, made a 
recommendation to the Federal Railroad Administration (FRA) to require the installation, in all 
controlling locomotive cabs and cab car operating compartments, of inward- and outward-facing 
audio and video recorders capable of providing recordings to verify train crew actions and train 
operating conditions.54 In 2015, US federal legislation55, required inward- and outward-facing 
cameras on all passenger locomotives (when leading). According to the FRA, most larger freight 
operations and a few passenger operations have already installed inward-facing cameras in 
anticipation of regulation. 

In 2013, the Transportation Safety Board of Canada (TSB) recommended ‘The Department of 
Transport require all controlling locomotives in main line operations be equipped with in-cab 
video.’56 Since that time, the TSB have continued collaborative efforts to move the issue forward, 
and in May 2017, legislation was introduced in the Canadian House of Commons to mandate 
locomotive voice and video recording (LVVR) in locomotive cabs. Transport Canada has been 
conducting pre-consultation and drafting of its new regulations relating to the introduction of LVVR. 

                                                      
51  Office of the National Rail Safety Regulator (2011). Rail Safety Compliance Code – Data Loggers. Section 4. 
52  NSW Passenger Transport Regulation 2017 cl. 82. 
53  US National Transportation Safety Board (1997) Safety Recommendation RAR-97/02 from Collision and Derailment of 

Maryland Rail Commuter MARC Train 286 and National Railroad Passenger Corporation Amtrak Train 29 Near Silver 
Spring, Maryland, on February 16, 1996. 

54  US National Transportation Safety Board (2010) NTSB Safety Recommendation R-10-001. 
55  Fixing America's Surface Transportation Act – Public Law 114th Congress Public Law 94, 2015, Sec. 11411. 
56  Transportation Safety Board of Canada (2013) TSB Recommendation R13-02. 
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The following table shows recent Australian rail investigations where in-cab audio and video 
recording of the driver, if available, would likely have assisted in determining the actions of the 
train crew and would likely have provided an accurate record of the events in the driver’s cab 
(Table 3). 

Table 3: Australian rail incidents where in-cab audio and video recording may have 
assisted the investigation 

Location Date Title and brief summary 

Hurlstone Park, 
NSW 

30 Jan 2013 Multiple SPAD by freight train 9837 – train crew, both possibly asleep, 
passed two signals at stop while track workers were on the track ahead. 

Kilbride, NSW 22 May 2014 Near hit with detrained passengers on track at Kilbride - the crew of V938 
detrained passengers onto the track without having arranged the required 
train protection. 

Mt Druitt, NSW 12 Mar 2015 Wrong running direction involving passenger train 165-S – a driver drove 
an empty cars passenger train in the wrong direction for 761 m. 

Hornsby, NSW 17 Dec 2015 SPAD and derailment of empty Tangara service 109D – driver was 
distracted by another driver in the cab and passed two signals. 

Muswellbrook, 
NSW 

2 Dec 2016 Disabled Xplorer passenger service NP23. Driver reacted to fire alarm from 
auxiliary engine and over 200 passengers stranded on board train. 

Unanderra, NSW 22 Apr 2017 Runaway of grain train 8960 – a fully loaded grain train ranaway down 
Illawarra mountain reaching a speed of 107 km/h. 

Petrie, Qld 12 Oct 2017 SPAD by train 2552 – a driver, driving an empty suburban passenger train, 
passed a signal at stop and did not recall acknowledging the onboard 
Automatic Warning System. 

Bowen Hills, Qld 10 Jan 2018 Signal ME45 passed at danger resulting in a near-miss between suburban 
passenger trains TP43 and TR50. The driver was unaware of the SPAD 
occurrence and continued to operate the train as if the signal was not 
displaying a stop indication. 

Wagga Wagga, 
NSW 

1 Mar 2019 Pacific National grain train 5KC3 passed a series of signals at danger. The 
train came to a halt approximately 3 km from train 5BM9 which was 
travelling in the down direction on the same line. 

In many investigations, having in-cab audio and video recordings from the driver’s cab would have 
provided unequivocal primary evidence to assist in determining the contributory factors to an 
incident.  

It would be beneficial if the relevant Australian agencies would commence the process of 
consultation with key stakeholders regarding a requirement for Australian rail operators to install 
in-cab audio and video recorders in driver’s compartments.  

Buffer stop issues 
Buffer stops are infrastructure items at the end of rail tracks or sidings which are used to prevent 
rolling stock from running off the end of the track or colliding with adjacent structures. In the event 
of a train colliding with the buffer stop, another main function is to reduce the impact forces 
transmitted through the rolling stock in order to minimise injury to train crew and passengers and 
to minimise damage to the rolling stock itself.  

Energy-absorbing and fixed buffer stops are the two most common types used by railways in 
Australia. The purpose of an energy-absorbing buffer stop is to progressively transform a train’s 
energy into heat through friction elements that move together with the buffer stop frame along the 
track or through the displacement of hydraulic rams or springs. Fixed buffer stops generally 
consist of a frame or block rigidly fixed to the rails or in the ground. A rigid buffer stop has a limited 
ability to dissipate a train’s kinetic energy and is generally only effective in low-speed collisions (10 
km/h or below). 
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The ASA buffer stop standard specifies that the energy-absorbing buffer stops may be of the 
following types:  

• Friction – used where there is sufficient distance for the friction shoes to slide along the rails 
(Figure 15) 

• Hydraulic – dissipate energy where hydraulic rams slow the train (Figure 16) 
• Combination of friction and hydraulic – initial impact taken by the hydraulic rams with residual 

energy transferred to the buffer frame (Figure 17).57 
Figure 15: Friction buffer stop 

 
This shows an energy- absorbing friction buffer stop. It has sliding friction shoes, anti-climbers and a coupler-compatible arrangement at 
the front. 
Source: TfNSW with annotations by ATSB 

                                                      
57  Transport for New South Wales Standard Buffer Stops T HR TR 25000ST, Version 1.0, Issued: 10 July 2017.p.11. 
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Figure 16: Hydraulic buffer stop 

 
This figure shows an energy-absorbing hydraulic buffer stop. It has hydraulic rams, a buffer beam and a coupler-compatible arrangement 
at the front. 
Source: TfNSW with annotations by ATSB 

Figure 17: Combination hydraulic and friction buffer stop 

 
This figure shows an energy-absorbing combination of hydraulic and friction buffer stop. It has friction shoes designed to stop or slow the 
train upon impact. The front of the buffer stop has a hydraulic arm with a rubber face coupling arrangement. 
Source: TfNSW with annotations by ATSB 

The buffer stop at the end of Platform 2 at Richmond Station (the Richmond buffer stop) did not 
absorb the energy of the collision with A42 as was expected. The reason is that the hydro-
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pneumatic rams on the buffer stop were not aligned with the crash energy management system at 
the front of the Waratah train. Instead of the rams aligning with a solid surface and absorbing 
energy, they penetrated the cavity on either side of the automatic coupler at the front of the train 
and were bent downward and inward. The buffer was designed for rolling stock operating at the 
time of installation such as the K-set, introduced into service 1981-85. These were not operating 
on the Richmond line at the time of the accident. 

As a result of these energy-absorbing rams not performing as intended, the force of the collision 
was instead transferred to the crash energy-management system of the train and the concrete 
body of the buffer stop. The front of the coupler collided with the vertical face of the reinforced 
concrete end stop of the buffer stop. This activated the crash energy management system 
associated with the coupler which features gas-filled chambers and crash tubes. It should be 
emphasised that, ideally, the rams on the buffer stop act in conjunction with the train’s crash 
energy management system to absorb impact energy (Figure 18).  

Figure 18: Richmond buffer stop and front CEMS of A42 

 
This figure shows the plan view and side view of the Richmond buffer stop and the front of train CEMS of A42 just before contact. 
Source: Downer with annotations by ATSB 

The buffer stop at Richmond has an energy capacity of 896 kJ which represents approximately 
8% of the total collision energy associated with an impact speed of 26 km/h.  This type of buffer is 
suited for low-speed collisions of approximately 10 km/h. 
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The latest buffer stops installed on the Sydney metropolitan rail network are compliant with the 
current ASA buffer stop standard. The current ASA buffer stop standard states that buffer stops 
should be designed to suit the range of couplers on the rolling stock operating on that track.58 The 
energy-absorbing aspect of the Richmond buffer stop was not compatible with this Waratah train 
which operated regularly on the Richmond line and had done so for more than 5 years. The 
Richmond buffer stop was not compatible with most other Sydney Trains rolling stock. 

As discussed earlier, an external engineering consultancy was commissioned by RailCorp in 2005 
and 2008 to review the effectiveness of overrun protection.  

The 2005 report investigated and reviewed what overrun protection was in place in the Sydney 
greater metropolitan area. It made recommendations to reduce the risk of overrun in 35 locations. 
Richmond was one of these locations and the report recommended the installation of a friction-
type buffer stop, as well as extending the platform length by 1 m.  

The 2008 report focussed only on the two identified high-risk locations, Richmond and Carlingford. 
It reported that the existing buffer arrangements at Richmond would not survive an impact of a 
500 t train with an approach speed of 26 km/h or above.59 This assessment was incorrect, as was 
demonstrated in the collision with the buffer stop on 22 January 2018. The collision showed that in 
fact the buffer stop would stop a 500 t train at 26 km/h (despite the energy-absorbing arms not 
performing as designed). The train was successfully stopped, and then recoiled approximately 
3 m. The buffer stop survived largely intact and was moved approximately 12 mm backward. 

The 2008 report recommended a number of improved buffer stop options for Richmond platform 
2. Like the 2005 report, one option recommended was the installation of a friction-type buffer stop 
and the extension of the platform by 1 m. Another option recommended was the installation of a 
combination hydraulic and friction buffer stop. As stated previously, there was no evidence 
provided to indicate that RailCorp acted upon any of the recommendations regarding overrun 
protection at Richmond or Carlingford stations, nor could any reasons be provided for the inaction.  

Neither the 2005 or the 2008 report mentioned the potential ineffectiveness of the hydro-
pneumatic rams on the Richmond buffer stop. Also, the reports did not discuss the compatibility of 
the buffer stops with the crash energy management systems on the newer rolling stock. At the 
time the reports were written, both the T-set (Tangara) and M-set (Millennium) trains, which are 
fitted with the Scharfenberg coupler and a form of crash energy management system, were in 
operation.  

Design of the replacement buffer stop at Richmond 

Following the collision, Sydney Trains assessed the damage to the buffer stop at Richmond 
Platform 2 and conducted an internal investigation. They also convened meetings with internal 
and external stakeholders, including the ASA and the original engineering manufacturer of the 
hydraulic rams. After considering a range of options, Sydney Trains decided to demolish the 
existing Richmond buffer stop and replace it with a redesigned buffer stop that is compliant with 
the ASA buffer stop standard (Figures 19 and 20). This design may be used for replacement of 
other buffer stops on similarly highly length-constrained passenger terminating site on the 
Sydney metropolitan rail network. 

Due to the proximity of a major road, Market St, situated behind Richmond Station, it was 
determined that it was not feasible to extend the length of the track past the platform. This 
restricted the type of energy-absorbing buffer stop that could be installed at the western end of 
Richmond Platforms 1 and 2 to a hydraulic buffer stop. The extension of the platform to the east 
was also problematic due to the track and infrastructure configuration. This means there was not 

                                                      
58  Transport for New South Wales Standard Buffer Stops T HR TR 25000ST, Version 1.0, Issued: 10 July 2017.Clause 

13.6. 
59  SKM report (2008) Op.Cit. p.28. 
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the requisite activation length60 for a friction buffer stop or a combination hydraulic and friction 
buffer stop at Richmond Platforms 1 and 2.  

The replacement buffer stop design includes a buffer beam design where the dimensions are 
adjusted to suit the rolling stock operating in that area. The design complies with the standard 
which states that the buffer face should be designed for the automatic coupler (Sharfenberg type 
10) but should also be capable of stopping a train fitted with an automatic (AAR 10A) interlocking 
coupler. The buffers also incorporate anti-climber contact areas to reduce the risk of a train 
overriding the buffer stop upon collision at a speed above the design speed. 

Figure 19: Redesigned buffer stop   

 
This diagram shows the design for an energy-absorbing hydraulic buffer stop that was the basis for the replacement buffer stop at 
Richmond.  
Source: Sydney Trains with annotations by ATSB 

                                                      
60  Transport for New South Wales Standard Buffer Stops T HR TR 25000ST, Version 1.0, Issued: 10 July 2017. p.25. 
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Figure 20: Redesigned buffer stop for Waratah and Millennium trains 

 
This elevation drawing shows the differences in design of the front buffer beam for the Waratah and Millennium trains.  
Source: Sydney Trains 

Risk assessment of buffer stops 

Sydney Trains indicated that there were a total of 167 buffers stops in the Sydney metropolitan 
network. According to a network-wide review of buffer stops undertaken by Sydney Trains, 
following the incident, none of buffer stops, at the time of the collision, met the ASA buffer stop 
standard Specification ASA T HR TR 25000 ST V1.0, 10 July 2017. The majority of these are at 
the end of sidings and stabling yards where passengers would not be expected to be on board the 
service. For example, at Richmond, only two of the three buffer stops are at the end of a regular 
passenger line. The other line, the Up storage siding, has no platform for passenger access.  

The most safety-critical buffer stops are positioned where approaching trains have passengers on 
board. These are typically at the end of a regular passenger line, examples of which are at 
Carlingford, Cronulla, Richmond and at Sydney Terminal (Central). An additional function of many 
of these buffer stops is that they prevent the train from running off the track and entering another 
environment. 

The Carlingford buffer stop, when inspected in March 2019 (14 months after the Richmond 
collision), still had the standard Department of Railways NSW, Way and Works Branch, 1963-
designed timber fixed buffer stop bolted to the track (Figure 21). Reviewing the effectiveness of 
this buffer stop, the 2008 report calculated that timber buffer stops are unable to resist a force of 
1000 kN and would break away. The report stated that ‘the current fixed timber buffer stop would 
not be able to arrest any train effectively at any speed.’61  

                                                      
61  SKM report (2008) Op.Cit. p.5. 
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Figure 21: Fixed buffer stop at Carlingford station 

 
This figure shows the buffer stop at the end of the line at Carlingford station on the Sydney rail network. 
Source: ATSB 

Following the collision, Sydney Trains conducted an end-of-line risk prioritisation of the safety-
critical buffer stops on its network. The review rated 23 buffer stops with a category 1 level hazard 
rating and a further 15 with a ranking range from 2 to 5. The following four locations achieved a 
top prioritisation for mitigation measures to be put in place: Central Platform 9, Richmond Platform 
2, Macarthur turn-back road, and Carlingford. 

The buffer stops at Richmond Platforms 1 and 2 have been redesigned and are scheduled for 
replacement in 2020. The buffer stop at Richmond Up storage siding line will retain the old design 
buffer stop as this line is not used for passenger services.  

Sydney Trains have notified this ATSB investigation that no planned upgrades to the Carlingford 
line will be undertaken. This line will be relinquished from Sydney Trains’ control from the end of 
2019. A proposed light rail service is planned to operate in this rail corridor. 

Crashworthiness and crash energy management 
The aim of designing for crashworthiness is to mitigate the consequences of collisions in a 
controlled manner and to reduce the risk of injury to the occupants.62 The British and European 
standard for crashworthiness requirements for railway vehicle bodies states that it is impractical to 
design for all possible crash scenarios. Therefore, the design collision scenarios chosen represent 
the most common collision situations and those that might result in most casualties. 

These are: 

• A front-end impact between two identical train units 
• A front-end impact with a different type of rail vehicle 
• Train unit front impact with a large road vehicle on a level crossing 
• Train unit impact into low obstacle (e.g. car on a level crossing, animal, rubbish). 

                                                      
62  British Standard BS EN 15227:2008 +A1:2010 – Railway applications - Crashworthiness requirements for railway 

vehicle bodies. p.5. 
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The general principles are: 

• Reduce the risk of overriding 
• Absorb collision energy in a controlled manner 
• Maintain survival space and structural integrity of the occupied areas 
• Limit the deceleration 
• Reduce the risk of derailment. 
The crashworthiness requirements for the Waratah were specified in a RailCorp specification,63 
and no dynamic modelling of buffer impact scenarios was conducted during the design phase of 
the Waratah contract. 

T-sets (Tangara) introduced into service between 1988 -1995 have a lower level crash energy 
management systems (CEMS), incorporating anti-telescoping columns designed to withstand a 
static end load of 700 kN. CEMS is not present on earlier model rolling stock such as the S-sets, 
K-sets or C-sets.  

A feature of newer Sydney Trains passenger rolling stock is the presence of a CEMS. This feature 
is present on M-sets (Millennium) and A-sets (Waratah), however, the newer A-sets can 
accommodate a significant increase in energy absorption capacity in CEMS over the M-Sets. 
Although not explicitly specified in any standard, the M-set was the first to use anti-climbers 
between carriages. The design energy absorption capacity on the leading car is 3.215 MJ at 50 
km/h which exceeds the British Standard Railway Group requirement of 1 MJ.64 The collision 
energy of the train at this impact was calculated as approximately 10 MJ.  

The design of the A-set enhances the crashworthiness performance by limiting vertical and lateral 
movement and has crush zones at the end of each car. The crush zones of unoccupied areas are 
intended to collapse in a controlled progressive manner, which assists to keep the cars in-line. 
The A-set CEMS was not designed to interface with the buffer stop arrangement installed at 
Platform 2 Richmond Station. 

An ASA standard exists for the structural integrity and crashworthiness of passenger rolling stock. 
This standard covers the minimum requirements that passenger rolling stock shall meet over its 
design life. 65 It adopts the requirements from national and international standards including 
European standard EN 15227: 2008. 

The Australian Rail Industry Safety and Standards Board have developed an Australian Standard 
(AS 7521:2017) which includes a section on collision energy management. It states that the rolling 
stock collision energy management strategy shall be supplied by the rolling stock designer. This 
strategy shall include the design of the interior elements and how they integrate with the exterior 
crashworthiness.66 

Crashworthiness design for A-set 

In 2009, on behalf of Downer, a specialist consulting firm called Delta Rail undertook a theoretical 
review of the crashworthiness risk of the A-set fleet as part of the public-private partnership (PPP) 
acquisition process. The review was to compare the crashworthiness design of the train against a 
train built to UK Railway Group Standard GM/RT2100 Issue 3. It stated that the collision 
management system was optimised for collisions between similar trains and was supported by a 
range of modelling and simulation. It covered the risk for collision with a buffer stop and stated:  

‘In the event of a buffer stop collision, the train’s energy management system will provide some 
degree of mitigation, however, the level of protection will depend on the effectiveness of the contact 
and engagement between the coupler, anti-climbers and the buffer stop, together with the energy 

                                                      
63  RailCorp Rolling Stock PPP – Double Deck Trains Train Performance Specification v21, 22 December 2015. 
64  Downer Rail Engineering Report CN01- crashworthiness methodology, CER01484, 25 April 2009.p.6. 
65  TfNSW Standard T MU RS 01000 ST Structural integrity and crashworthiness of passenger rolling stock, 2017. 
66  Australian Standard AS 7521:2018 Interior crashworthiness. 
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absorbing properties of the buffer stop. Some buffer stop types have very little likelihood of utilising the 
energy absorption capacity of the coupler because the coupler head cannot be restrained laterally 
under longitudinal loading, or is too low to contact the buffer stop, or there is no contact face in the 
region of the coupler. If the coupler does slip laterally on the buffer stop face, there may be 
considerable damage to the vehicle in the coupler pocket area without corresponding benefit in terms 
of controlled energy absorption.  

‘However, the PPP train will be no different in this respect from a GM/RT2100-compliant train. The 
remaining cars in rear of the leading car will retain the benefit of the energy management system. In 
the UK, Railway Group Standards GC/RT5033 and GC/RC5633 recommend that if the rolling stock 
on a route is to be changed, there should be a review of buffer stops by the infrastructure owner, and 
a risk assessment methodology is provided. It is therefore recommended that closure of this risk 
should be formally transferred to Railcorp.’67 

This recommendation that the review of buffer stops be undertaken if the rolling stock on the route 
is changed was not completed by RailCorp.  

The Waratah Train crashworthiness performance was verified with respect to the requirements 
specified in the Train Performance Specification. This included: 

• Dynamic impact testing on the couplers (both automatic and semipermanent couplers) 68 
• Verification testing on car end structure, vertical end crash barriers columns and anti-

climbers69 
• Design mass estimation and centre of gravity locations 70  
• VAMPIRE71 simulations of the static twist test 72 
• Finite element analysis of energy-absorbing crash boxes 73 
• Crashworthiness methodology.74 
It should be noted that verification of the A-set crashworthiness capabilities is based upon 
numerical simulations in conjunction with physical testing of the energy absorption elements. 
There was no physical testing of the overall set. The crash simulations are mathematical studies 
of the expected behaviour of the rail vehicles’ response in various collision scenarios under 
particular conditions, the actual performance of the train in a real world collision may differ.  

CEMS features on A-set 

As stated previously, the presence of a CEMS is a feature of the A-sets. The following are the key 
design elements of the A-set’s crashworthiness methodology: 

The couplers consist of couplers at the end of the terminal cars and semi-permanent couplers 
between cars on an 8-car set. The coupler system is a standard design and the coupler head is 
fitted with a Scharfenberg (Voith) 10 coupler. The couplers incorporate both regenerative and non-
regenerative energy-absorbing devices in the form of a gas-hydraulic ram (for elastic deformation) 
and a deformation tube (for plastic deformation). The gas hydraulic ram absorbs energy at varying 
amounts depending on the speed of collision. It reduces deceleration and recoil and also delays 
the point of structural deformation. It is designed to absorb the energy of an 18km/h symmetric 
collision without activating the deformation tubes. 

                                                      
67  Downer, PPP Trains crashworthiness risk review Delta Rail Report - Body crashworthiness risk assessment. 8 

November 2011.p.14. 
68  Downer, Dynamic Crash Test, PAU817-012, 15 July 2010. 
69  Downer, Engineering test report, CTR00710-001, 5 November 2011. 
70  Downer, Rolling Stock PPP Sets – Mass Estimation, CEC00523, 8July 2010. 
71  VAMPIRE – a vehicle dynamics simulation program. 
72  Downer, Static Twist Test Simulation, CEC00594 – CN01, 23 April 2009. 
73  Downer, Engineering Report – FEA of energy absorbing crash boxes, 15 May 2009. 
74  Downer, Engineering Report crashworthiness methodology, CER01484 – CN01, 25 April 2009.  
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The deformation tubes, if activated, consist of a mandrel which is forced into a tube of a slightly 
smaller diameter. This interference fit means that the mandrel deforms the tube and increases the 
tube diameter as it passes along the tube. The plastic deformation dissipates energy from the 
collision. Each tube is designed to arrest the design force at specified locations along the train set. 
It also withstands vertical loading which may assist in prevention of overriding.  

On the end-of-train couplers there is up to 250kJ elastic deformation energy and 700kJ of plastic 
deformation energy-absorption capacity. On the semi-permanent couplers there is up to 480kJ 
elastic deformation energy and 1350kJ of plastic deformation energy-absorption capacity. 

Two crash boxes, one on each side of the car, are located at both ends of all cars of the train. The 
crash boxes use a sacrificial deformation zone of an aluminium honeycomb core with a piston and 
ram arrangement (Figure 22). This absorbs a higher speed collision energy at a constant force 
level. 
Figure 22: CEMS elements on leading end of A-set driving (or terminal) car 

 
This figure shows the parts of the crash energy management system on the driving car of an A-set. 
Source: Downer with annotations by ATSB 

Located on the front of the crash box rams are devices called anti-climbers (Figure 23). Anti-
climbers consist of horizontal rib-like arrangements which are aligned to mesh with a coinciding 
anti-climber on the adjacent car (or buffer stop). The aim of the anti-climbers is to prevent vehicle 
overriding in the event of a collision impact and reduce the risk of telescoping of car bodies. 
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Figure 23: CEMS parts on intercar end of A-set driving car 

 
This figure shows the parts of the crash energy management system on the intercar end of the driving car of an A-set. 
Source: Downer with annotations by ATSB 

Two collision pillars (posts) are also fitted to both ends of all cars (Figure 23). These provide 
additional strengthening to the end wall of the car to protect occupants. At the cab end of the train 
they terminate at window sill-height but otherwise extend from floor to ceiling height. 

There are also a number of improvements to the A-set design that improved its strength and 
crashworthiness capability. These include: 
• Improved car body-to-bogie attachment strength 
• Increased car body strength 
• High-impact resistant glass reinforced plastic (GRP) cab canopy  
• Improved roll-over strength 
• Improved interior design. 

Predicted behaviour of A-set during collision 

The behaviour of any train during a collision is dependent upon many factors including the track 
geometry (straight or curved), how the colliding cars interact, the coupling between cars, and the 
crush performance of the cars. If overriding of cars occurs, this can cause shearing or crushing of 
the lower car with the consequent serious risk to passengers. Another negative interaction caused 
by a collision can be lateral deflection in which the coupled cars form an accordion pattern when 
viewed from above. This escape from the track envelope creates additional risk, such as collision 
with a train on an adjacent track. An effective crash energy-management system will limit the 
vertical and lateral motions of the cars and lead to a controlled collapse of crush zones. Research 
has shown that this is effective in assisting to keep cars in line. A controlled deformation and 
collapse of designated sections also reduces the deceleration on passengers and crew. 

The crash energy management system on an A-set is optimised to minimise force levels. The 
crash response sequence of the CEM is designed to be progressive in nature, with the initial 
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contactor deforming first, followed by the next structural component, and progressively along the 
train. Each section should exhibit sufficient resistance so that the plastic deformation of the 
previous section can dissipate energy. 

It is anticipated that the leading car (Car 1) would be the first contact point of most collisions. In 
this case the following sequence should occur: 

• At the front of Car 1, the coupler engages, pushing back the gas-hydraulic ram for a stroke of 
125 mm. Then, at the end of the stroke of the ram, the force build-up causes the deformation 
tube to activate for a 300 mm stroke. 

• At the front of Car 1, on each side of the coupler, the anti-climbers engage (minimising vertical 
movement to prevent intrusion into the passenger area) and the crash boxes on each side are 
activated for a stroke of 750 mm. 

• Between Car 1 and Car 2, the semi-permanent coupler gas-hydraulic buffer engages for a 
stroke of 125 mm. Then, at the end of the stroke of the ram, the force build-up causes the 
deformation tube to activate for a 125 mm stroke. 

• Between Car 1 and Car 2, on each side of the coupler, the anti-climbers engage with each 
other and the crash boxes on each side are activated for a stroke of 300 mm in conjunction 
with the remaining stroke of the deformation tube. 

• The between-cars energy transfer by the semi-permanent couplers and the crash boxes is 
repeated for the rest of the cars progressively along the train. 

A42 damage description following collision 

The initial observation of the train revealed that damage was mainly confined to the front of the 
train and the areas between the cars. The body of the cars and interior passenger areas showed 
little visible damage or deformation. Predictably, the further from the impact zone, the lesser 
damage level.  

More comprehensive and intrusive inspections of the train and its components were carried out in 
the months following the collision. These inspections found that the front of the train, car D6342, 
sustained damage to the coupler, anti-climbers, the emergency door, the tread plate, the cab 
canopy, the GRP panels, wiring and piping. The intercar areas between all cars sustained some 
damage; this included couplers, anti-climbers, crash boxes, gangways, door panels and electrical 
connecting cables. Various cars sustained damage to their end walls and collision pillars. A more 
detailed summary of damage is shown in Table 4. 

Figure 24: A42 car numbering 

 
Source: Downer with annotations by ATSB 
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Table 4: Damage summary sustained to A42. 
Location Damage summary 

Impact end Damaged coupler, damaged tread plate, damaged GRP panels, damaged cab canopy. 

Intercar 1 Damaged gangway, severely damaged and bent coupler, damaged intercar jumper cables, damaged 
GRP and end wall structure, anti-climber engagement, coupler indented into draft gear pocket. 

Intercar 2 Damaged gangway, severely damaged and bent coupler, damaged intercar jumper cables, damaged 
GRP and end wall structure, damage to 1500V DC junction box, N5542 intercar door jammed. 

Intercar 3 Damaged gangway, severely damaged coupler and drift ring fractured, N5542 sitting atop T6542 anti-
climbers, damaged intercar jumper cables, T6542 intercar door jammed. 

Intercar 4 Damaged gangway, damaged coupler, damaged gangway GRP and end panel. 

Intercar 5 Damaged gangway, damaged coupler, damaged gangway GRP and end panel. 

Intercar 6 Damaged coupler, gangway roof collapsed. 

Intercar 7 Gangway roof collapsed. 
Source: Downer 

Performance of A42 CEMS 

The CEMS on Waratah passenger train A42 reduced the impact force of the collision but did not 
perform optimally. It did not perform as the design or modelling predicted. It should be noted that 
collision energy was reduced by the presence and performance of a CEMS, which likely lessened 
the injury level of passengers. The type of collision with a buffer stop, like the Richmond buffer 
stop, was not one of the scenarios specified in the original train performance specification.75  

Downer evaluated the impact speed from a number of data sources and concluded that the 
impact speed was in the range of 26 km/h ± 2 km/h. A small variation in velocity has a significant 
effect on the impact energy. For instance, the impact speed at 28 km/hr has a kinetic energy of 12 
MJ while the impact speed of 24 km/hr has a kinetic energy of 9 MJ.  

According to calculations by Downer, a simulation of the Richmond collision predicted that 7.5 MJ 
(or approximately 70%) of the collision energy would be absorbed by the CEMS. The remainder of 
the energy would be absorbed by the eight-car body structure.76 It was estimated that 4.5 MJ (or 
approximately 40%) of collision energy was actually absorbed by the CEMS during the Richmond 
collision. There were inconsistencies between predicted and actual behaviour of the CEMS: 

• The predicted forces and decelerations experienced by the cars were significantly greater than 
the design load cases. 

• There was inconsistency between simulation results and post-collision observations where the 
actual structural damage is considered to be minor with no failure at equipment mounts. 

• There were significant portions of unaccounted energy.77 
The rapid deceleration of A42 on impact caused pitching on the suspension in relation to the car’s 
centre of gravity, because the CEMS did not activate properly and fully activate, due to the 
incompatibility between the CEMS and the Richmond buffer stop. A meeting, attended by 
representatives from Downer, Sydney Trains and TfNSW, discussing A42’s performance 
recorded:  

‘The vehicle pitching meant that coupler angular displacement exceeded the 8-degree service limit, 
inducing significant bending in the shanks and in some cases preventing the couplers from fully 
stroking. 

The induced bending of the coupler shanks is quite likely the reason why some of the intermediate 
couplers collapse tubes did not activate. 

                                                      
75  RailCorp Rolling Stock PPP – Double Deck Trains Train Performance Specification v21, 22 December 2015. p.73-74. 
76  Downer CEC00903, Engineering calculation vehicle deceleration, 8 Feb 2019. p.9. 
77  Downer CEC00903, Engineering calculation vehicle deceleration, 8 Feb 2019. p.20. 
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Vehicle pitching of approximately 308 mm relative vertical displacement on some vehicle ends 
resulted in the anti-climbers being vertically misaligned between the car ends.’78 

Following the incident at Richmond, Downer, in consultation with Sydney Trains and TfNSW, have 
commissioned a third party to 3D model the collision. The results of this 3D modelling were 
inconclusive and Downer have completed their own linear modelling. 

Downer conducted a comprehensive examination of the performance of each component of the 
CEMS. The table below lists the CEMS components for the eight cars, the calculated load 
absorption level (for estimated speed impact of 26 km/h), their maximum stroke displacement and 
the actual Richmond stroke displacement (Table 5). 

Table 5: CEMS components and force level, maximum stroke displacement and actual 
Richmond stroke displacement 

LOCATION COMPONENT FORCE 

(kN) 

MAX STROKE 

(mm) 

RICHMOND 
STROKE 

(mm) 

LEAD END Coupler (Gas Hydraulic) 2325 125 124 

 Coupler (Deformation tube) 2325 300 115 

 Crash boxes 2600 800 Left 0, Right 50 

INTERCAR 1 Coupler (Gas Hydraulic) 2250 250 247 

 Coupler (Deformation tube) 2250 

2250 

300 

300 

215 

39 

 Crash boxes 600 300 Left 168, Right 175 

INTERCAR 2 Coupler (Gas Hydraulic) 2125 250 250 

 Coupler (Deformation tube) 2125 

2125 

300 

300 

0-3 

41 

 Crash boxes 550 300 Left 194, Right 38 

INTERCAR 3 Coupler (Gas Hydraulic) 1950 250 248 

 Coupler (Deformation tube) 1950 300 300 

 Crash boxes 2425 300 Left 4, Right 1 

INTERCAR 4 Coupler (Gas Hydraulic) 1800 250 250 

 Coupler (Deformation tube) 1800 300 300 

 Crash boxes 1950 300 Left 10, Right 4 

INTERCAR 5 Coupler (Gas Hydraulic) 1950 250 247 

 Coupler (Deformation tube) 1950 300 115 

 Crash boxes 2425 300 Left 0, Right 0 

INTERCAR 6 Coupler (Gas Hydraulic) 2125 250 249 

 Coupler (Deformation tube) 2125 

2125 

300 

300 

0 

9 

 Crash boxes 550 300 Left 0, Right 0 

INTERCAR 7 Coupler (Gas Hydraulic) 2250 250 223 

 Coupler (Deformation tube) 2250 

2250 

300 

300 

0 

8 

 Crash boxes 600 300 Left 0, Right 0 
Source: Downer 

 

                                                      
78  Downer meeting minutes 21 Jan 2019. 
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A few examples of the performance of A42’s CEMS are shown below. 

The front edge of both anti-climbers contacted the buffer tube flange on the face of the concrete 
buffer stop (Figures 25 and 26). The driver’s side crash box activated and deformed rearwards by 
50 mm; this damaged the fibreglass canopy and floor. The guard’s side crash box did not activate 
despite the anti-climber also contacting the buffer tube flange (Figure 27). The maximum stroke 
for the crash box rams behind the anti-climber was 800 mm. It is possible the edge contact 
transferred angular force to the anti-climber, this did not allow the ram to slide and deform as 
designed.  

Figure 25: Position of anti-climbers on leading car 

 

This figure shows position of the anti-climbers on the leading car of A42 and the edge which contacted the buffer tube flange. 
Source: ATSB 

Figure 26: Damage from impact with anti-climbers 

 
This figure shows the damage to the buffer stop tube flange (Right side) following contact with A42’s RHS anti-climber (Left side) and the 
corresponding damage to the RHS anti-climber edge. 
Source: ATSB 
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Figure 27: Crash box ram from left side of A42 leading car 

 
This figure shows the crash box ram being removed from A42. This ram did not activate during the collision as the contact area on the 
anti-climbers was at the side of the crash box on the radius of the outside corner of the anti-climber teeth. The anti-climber teeth fractured 
or sustained plastic flow under the extreme contact pressure and lost the force on the front of the crash box. 
Source: Downer with annotations by ATSB 

The semi-permanent coupler between the first and second cars (Figure 28), and that between the 
second and third cars were bent and damaged. The vertical angular movement of the semi-
permanent coupler is limited to 8 degrees (by design). This vertical limit was exceeded by the 
excessive pitching due to the CEMS not properly activating. The other four semi-permanent 
couplers also sustained damage. The anti-climbers between the third and fourth cars did not 
engage and instead one anti-climber damaged the 1500V DC junction box on the other car 
(Figure 29). The only semi-permanent coupler not to sustain damage was the semi-permanent 
coupler between the seventh and eighth cars. 

Figure 28: Bent semi-permanent coupler  

 
This figure shows the bent coupler between the first and second cars (D6342 and N5342) and also the contact witness marks on the anti-
climbers. 
Source: ATSB 
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Figure 29: Anti-climber into junction box  

 
This figure shows the No. 1 end of motor car N5542 overriding the No. 1 end of trailer car T6542, between the third and fourth cars. The 
anti-climber has damaged the 1500V DC junction box. 
Source: ATSB 

The bending of the couplers between the first two car interfaces, and the derailment of all wheels 
of a bogie (Figure 30), is indicative of vertical pitching that occurred because of the forces being 
transferred along the train not in a line of action close to the centreline through the couplers. This 
affected the alignment of the anti-climbers, which reduced their effectiveness in containing vertical 
movement (Figure 31). 
 

Figure 30: Derailed wheels  

 
This figure shows the derailed wheels on the bogie on the No.1 end of the fifth car (T6642) (non-platform side). 
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Source: ATSB 

Figure 31: Normal configuration of anti-climbers  

 
This figure shows the anti-climbers in their normal configuration between the seventh car (N5442) and the eighth car (D6442). 
Source: ATSB 

The existence of CEMS on A-sets meant that the force experienced by the passengers was less 
than if they had been on another, older type of Sydney Trains rolling stock. It was estimated that 
the CEMS absorbed approximately 40% of the collision energy. The train bodyshell showed no 
gross deformation and the seating fixtures and handrails all remained intact. All exterior 
passenger doors remained closed and windows unbroken. The passenger and crew blunt trauma 
injuries were likely caused by secondary impact with interior fittings or surfaces. None of the 
fittings contributed excessively to the injury toll. The impact inertia feature of the seats performed 
as designed, where the moveable seats locked under the impulsive collision force. Potential 
injury-causing mechanisms such as crushing, ejection, penetration or burns did not occur. 

Emergency response management 
The notification of the incident to Triple Zero and the Rail Management Centre occurred within two 
minutes following the collision. Within ten minutes, NSW Fire & Rescue, NSW Police and NSW 
Ambulance were on site. At 1004, eleven minutes later, NSW Police took control of the site. 
During this time, paramedics, Sydney Trains staff and uninjured passengers assisted in 
evacuation and provided first aid to injured persons.  

In accordance with his training, the station duty manager performed the notification task by placing 
a call to network control. Following the collision, the station customer service staff and other 
Sydney Trains employees present provided ongoing relevant information, directed and controlled 
the events on-site until the arrival of emergency services personnel. 

The incident occurred at a staffed suburban station close to major facilities, which meant that staff 
were already on hand and the location did not present difficulties in terms of emergency services 
accessing the site. Triage of injured persons was conducted promptly and all services performed 
well in the stressful environment of the accident site. Open access to the accident site was 
required, especially during the initial evacuation and treatment period. Afterwards, a police 
demarcation tape and security personnel on Platform 2 kept the site partially secure from 
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contamination by non-involved persons. The investigation determined that the emergency 
response at Richmond was effective. 

An examination of Sydney Trains emergency management documents found that Sydney Trains 
have detailed emergency management guidance for staff involved in responding to major 
emergencies such as occurred at Richmond. Prior to the incident, the station duty manager at 
Richmond had completed training in responding to a workplace emergencies, fire incidents and 
evacuation of a station. 

According to Sydney Trains, since 2014 up to the time of the incident, they had conducted 38 
evacuation exercises at various stations across the Sydney Trains network. These exercises 
involved conducting live evacuation drills with the objective of testing Sydney Trains' capability in 
responding to and managing incidents on stations across the Sydney Trains network.  

The evacuation exercises were conducted across the network and at times involved over a 
hundred individuals at a time, mostly in conjunction with emergency services. The scenario in 
each of these exercises was similar and usually involved a bomb threat, utilising the fire 
management system, manipulating points and hand signalling at failed signals. 

Other exercises conducted at regular intervals included: 

• NSW Fire & Rescue train lift and rescue exercises 
• Bushfire preparation 
• Counter-terrorism exercises with Australian Defence Forces 
• Bridge, train and tunnel evacuation 
• Train and track familiarisation. 
In addition, a local station desktop exercise was conducted at Richmond Station in October 2018 
as part of the monthly station team briefing. The desktop exercise scenario related to a station 
power failure. No emergency preparedness exercise, desktop or otherwise, could be identified 
that included a passenger train collision with another train or a collision with a buffer stop. 

Organisational risk management 
Sydney Trains manages operational risks through a safety management system that comprises 
20 elements. These elements include: safety responsibilities, asset lifecycle management, and 
engineering and operational standards. This system contains a series of interconnected 
documents that describe what must be done to manage safety, who is responsible, and how 
certain tasks must be done. The element of ‘Manage Operational Safety Risk’ describes a 
cascading series of risk documents that identify and assess operational risks, assign control, 
monitor, and review the implementation of the controls. 

Identified in the Sydney Trains safety risk register was the hazard of a passenger train 
overshooting a designated stop point at a station. The incapacitation of a rail vehicle driver was 
also identified as one of the potential causes of a passenger train overshooting a designated stop 
point at a station. Six causes for this incapacitation were listed: ill health, influence of drugs and/or 
alcohol, stress, fatigue, distraction and confusion. The relevant preventative controls for a rail 
vehicle driver incapacitation, and the status at the time of the incident, were given as: 

• Automatic train protection (not operational at the time of the collision). 
• Driver safety system (installed on A42 but did not detect the driver’s incapacitation). 
• Rail safety worker health assessment program. 
The relevant mitigative controls for a rail vehicle driver incapacitation, relevant to the Richmond 
incident, were given as: 

• Buffer stop design satisfies integrity requirements for absorbing an impact. 
• Crashworthiness design of passenger train. 
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• Intermediate train stop (recommended for Richmond but was installed only after the collision). 
The buffer stop at Richmond did not absorb the impact as expected.  

Sydney Trains, like all rail transport operators, is required to ensure, so far as is reasonably 
practicable, the safety of its railway operations.79 So far as is reasonably practicable, Sydney 
Trains should have ensured the buffer stop at Richmond was designed, constructed, and 
maintained to appropriate standards that ensured safety on the day of the collision.  

Sydney Trains responded in regards to whether the buffer stop at Richmond was suited to 
purpose and able to function as designed for the newer types of electric passenger rolling stock 
(such as the Waratah) at the time of the collision: ‘Sydney Trains owns a large number of legacy 
equipment, which it acquired as part of the network infrastructure. The process of assessing this 
legacy equipment against present standards has been occurring on a priority-based system, due 
to the large number of items that require such an assessment. The buffer stop type at Richmond 
has not undergone the assessment process.’ 

The buffer stop at Richmond was one of 23 buffer stops identified as a high priority during an end-
of-line risk prioritisation. The site had previously been identified as a high priority for additional 
safety measures in reports commissioned by RailCorp in 2005 and 2008. The integrated safety 
management system and the risk evaluation process, since the commencement of Sydney Trains 
in 2013, had not verified that the Richmond buffer stop was compatible with the rolling stock 
running on the Richmond line. 

Once controls are in place, verification must be undertaken to ensure that the controls are 
effective at mitigating the risks to an acceptable level. A cohesive approach to risk management 
needs to ensure that no gaps exist in the verification of the control of safety risks. 

Downer conducted risk assessments for a variety of scenarios including a collision between two 
trains or with buffer stop, due to adverse weather conditions (low adhesion) and inadequate 
crashworthiness of train. The controls for these identified risks included: 

• VAMPIRE software used to address the crashworthiness requirements to verify the 
structural integrity of the design. 

• Checks that the centre of gravity of the completed car was as low as reasonably 
practicable. 

• A trade-off study on crashworthiness taking account of deformation tubes, gangway 
length, crumple zones and repair zones to confirm that an optimum crashworthiness 
design was achieved. 

• All crashworthiness/assembly type testing was completed before the cars were 
manufactured, in order to eliminate any issues for train testing and commissioning. 

• Ensured that checks for satisfactory condition of energy absorption components of the 
coupler and those incorporated in the car body structure. 

• Reviewed the adequacy of crashworthiness design against the following prescriptive 
requirements:  

(1) Structure to not fail by horizontal shearing between the car body shell and 
headstocks during the process of collapse. 

(2) Not collapse in a way which might initiate overriding and/or telescoping of cars or 
derailment of cars. 

                                                      
79 Office of the National Rail Safety Regulator (2014) Asset management guideline. 1.2.2. p.9. 
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(3) Be constructed as to mitigate the possibility of injury to occupants and other 
persons from such causes as detachment of components from, or deformation of, 
the car body structure and the formation of sharp or jagged fracture edges. 
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Findings 
From the evidence available, the following findings are made with respect to the collision of 
Waratah passenger train, A42, with the buffer stop that occurred on number 2 platform at 
Richmond Station, New South Wales on 22 January 2018.These findings should not be read as 
apportioning blame or liability to any particular organisation or individual. 

A safety issue is an event or condition that increases safety risk and (a) can reasonably be 
regarded as having the potential to adversely affect the safety of future operations, and (b) is a 
characteristic of an organisation or a system, rather than a characteristic of a specific individual, or 
characteristic of an operating environment at a specific point in time. 

Contributing factors 
• The driver of A42 did not brake at a crucial time as the train approached the buffer stop at the 

end of Platform 2 at Richmond Station. There was a 22-second period where no inputs were 
made to the train’s control system. 

• It is possible that the driver of A42 experienced a loss of consciousness during this 22-second 
period as the train approached the buffer stop. A number of possibilities during the course of 
the investigation were examined, these included: the driver blacking out, the driver 
experiencing a microsleep due to fatigue impairment, or the driver being distracted / inattentive. 
It could not be conclusively determined what occurred during this period. 

Other factors that increased risk 
• When A42 collided with buffer stop at Richmond Station No. 2 platform, the reinforced 

concrete end stop of the buffer stop withstood the impact of the collision and prevented 
the train from crossing into a pedestrian and main road precinct. The two hydro-
pneumatic rams on the front of the buffer stop did not perform their intended function. 
They were not aligned with the front of the Waratah train and instead of absorbing 
energy from the collision, they penetrated the cavity either side of the front-of-train 
coupler. (Safety issue) 

• The crash energy management system on the Waratah passenger train A42 reduced the 
impact force of the collision but not all components performed as designed. The 
performance of the crash energy management system was significantly limited by the 
buffer stop at Richmond being incompatible with the front of the Waratah train. (Safety 
issue) 

• Sydney Trains’ risk management procedures did not sufficiently mitigate risk to the safe 
operation of trains in circumstances when there were deficiencies in the buffer stop 
design at Richmond and at other locations. (Safety issue) 

• Sydney Trains’ risk management procedures did not sufficiently mitigate risk to the safe 
operation of trains in circumstances where the presence of an intermediate train stop at 
Richmond may have reduced the risk of trains approaching the station at excessive 
speed. (Safety issue) 

• The rostering of the driver in the days leading up to the incident was inconsistent with 
Sydney Trains' rostering procedures. (Safety issue) 

Other findings 
• The train's vigilance control system did not activate in the period where the driver experienced 

a possible loss of consciousness. The vigilance control system cycles were timed and tested 
and performed as designed. 
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• The operator enable system continued to be operated by the driver, despite the driver 
experiencing a possible loss of consciousness. 

• The passenger areas on the Waratah passenger train A42 remained intact and free from 
deformation following the collision with the buffer stop.  

• The driver was certified as medically fit to drive the train, in accordance with category A of the 
National Standard for Health Assessment of Rail Safety Workers, and had passed all previous 
medical assessments. Following the incident, he was subjected to further medical tests which 
could not identify any health issue apart from being diagnosed 8 months after the incident with 
moderate obstructive sleep apnea. 

• The investigation determined that there was insufficient time for the guard to react and apply 
the emergency brakes. There were no clues for the guard that there was anything amiss until 
approximately 2 seconds before the collision. The train had entered the platform at a speed 
that was normal and the train was decelerating slightly under the influence of the electro-
dynamic braking system. 

• There was no fault found with the train's braking and control system. 
• It was determined that the emergency response at Richmond was effective. 
• The introduction of ATP will significantly control the risk of overrun incidents using engineering 

controls to supervise the train speed and enforce braking when necessary. 
• The absence of inward facing in-cab audio and video recording meant that the investigation 

was unable to verify the driver’s actions as the train approached the buffer stop at the end of 
Platform 2 at Richmond Station. It would be beneficial if in-cab audio and video recorders were 
installed in driver's compartments. 
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Safety issues and actions 
The safety issues identified during this investigation are listed in the Findings and Safety issues 
and actions sections of this report. The Australian Transport Safety Bureau (ATSB) expects that 
all safety issues identified by the investigation should be addressed by the relevant 
organisation(s). In addressing those issues, the ATSB prefers to encourage relevant 
organisation(s) to proactively initiate safety action, rather than to issue formal safety 
recommendations or safety advisory notices. 

Depending on the level of risk of the safety issue, the extent of corrective action taken by the 
relevant organisation, or the desirability of directing a broad safety message to the rail industry, 
the ATSB may issue safety recommendations or safety advisory notices as part of the final report. 

The initial public version of these safety issues and actions are repeated separately on the ATSB 
website to facilitate monitoring by interested parties. Where relevant the safety issues and actions 
will be updated on the ATSB website as information comes to hand. 

Crash energy management system did not perform as designed 
Safety issue number: RO-2018-004-SI-01 

Safety issue owner:  Downer 

Operation affected:  Rail: Rolling stock 

Who it affects:  Rolling stock designers and rail infrastructure managers 

Safety issue description: 

The crash energy management system on the Waratah passenger train A42 reduced the impact 
force of the collision but not all components performed as designed. The performance of the crash 
energy management system was significantly limited by the buffer stop at Richmond being 
incompatible with the front of the Waratah train. 

Status of the safety issue 

Issue status: Addressed 

Justification: The ATSB notes that the actions taken to examine the behaviour of the CEMS on A42 and the 
implementation of a compatible buffer stop design, once implemented, should address the safety issue. 

Proactive safety action 

Action taken by: Downer 

Action number:  RO-2018-004-NSA-016 

Action type:  Proactive safety action 

Action status:  Closed 

Safety action taken 

Downer, in consultation with Reliance Rail, Sydney Trains and TfNSW completed a 
comprehensive review of the collision with the buffer at Richmond and has concluded that the 
Richmond buffer did not interface with the Waratah train and in fact restricted the operation of the 
CEMS systems at the front of the train. Because of the restricted energy absorption at the front 



› 57 ‹ 

ATSB – RO-2018-004 
 

 

end of the train this generated high vehicle decelerations causing the train carriages to pitch in 
excess of the design range of the coupler and inter car anti-climbers. 

Buffer stop effectiveness in collision 
Safety issue number: RO-2018-004-SI-02 

Safety issue owner:  Sydney Trains 

Operation affected:  Rail: Infrastructure 

Who it affects:  Rail infrastructure managers 

Safety issue description: 
When A42 collided with buffer stop at Richmond station No. 2 platform, the reinforced concrete 
end stop of the buffer stop withstood the impact of the collision and prevented the train from 
crossing into a pedestrian and main road precinct. The two hydro-pneumatic rams on the front of 
the buffer stop did not perform their intended function. They were not aligned with the front of the 
Waratah train and instead of absorbing energy from the collision, they penetrated the cavity either 
side of the front-of-train coupler. 

Status of the safety issue 

Issue status: Addressed 

Justification: The ATSB notes that the action to replace the buffer stops at Richmond, once implemented, should 
address the safety issue. 

Proactive safety action 

Action taken by: Sydney Trains 

Action number:  RO-2018-004-NSA-017 

Action type:  Proactive safety action 

Action status:  Closed 

Safety action taken 

Sydney Trains have redesigned the buffer stops for Richmond Station Platform 1 and 2. The new 
Platform 1 buffer concrete block was installed in April 2019. The Platform 2 buffer concrete block 
is planned for installation in January 2020. The buffers stop rams are planned for installation in 
February 2020. 

Management of risk associated with buffer stop deficiencies 
Safety issue number: RO-2018-004-SI-03 

Safety issue owner:  Sydney Trains 

Operation affected:  Rail: Infrastructure 

Who it affects:  Rail infrastructure managers 

Safety issue description: 

Sydney Trains’ risk management procedures did not sufficiently mitigate risk to the safe operation 
of trains in circumstances when there were deficiencies in the buffer stop design at Richmond and 
at other locations. 

Status of the safety issue 

Issue status: Addressed 
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Justification: The ATSB notes that the action initiated by Sydney Trains, once implemented, should address the 
safety issue. 

Proactive safety action 

Action taken by: Sydney Trains 

Action number:  RO-2018-004-NSA-018 

Action type:  Proactive safety action 

Action status:  Closed 

Safety action taken 

Sydney Trains in consultation with external stakeholders, redesigned the buffer stop to be 
compliant with the ASA buffer stop standard. This design will be the template for replacement of 
other buffer stops on the Sydney metropolitan rail network. Sydney Trains has commenced a 
program to upgrade buffer stops throughout the network using a risk prioritisation model.  

Management of risk associated with intermediate train stop 
installation 

Safety issue number: RO-2018-004-SI-04 

Safety issue owner:  Sydney Trains 

Operation affected:  Rail: Infrastructure 

Who it affects:  Rail infrastructure managers 

Safety issue description: 

Sydney Trains’ risk management procedures did not sufficiently mitigate risk to the safe operation 
of trains in circumstances where the presence of an intermediate train stop at Richmond may 
have reduced the risk of trains approaching the station at excessive speed. 

Status of the safety issue 

Issue status: Addressed 

Justification: The ATSB notes that the signalling upgrade and the introduction of ATP, once implemented, should 
address the safety issue. 

Proactive safety action 

Action taken by: Sydney Trains 

Action number:  RO-2018-004-NSA-019 

Action type:  Proactive safety action 

Action status:  Closed 

Safety action taken 

Sydney Trains have completed a signalling upgrade at Richmond, including intermediate train 
stops to control the approach speed. As well, implementation of the ATP project will control the 
risk of overrun incidents using engineering controls to supervise the train speed and enforce 
braking when necessary. 

Rostering of the driver inconsistent with rostering principles 
Safety issue number: RO-2018-004-SI-05 

Safety issue owner:  Sydney Trains 
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Operation affected:  Rail: Passenger-metropolitan 

Who it affects:  Rail rostering managers 

Safety issue description: 

The rostering of the driver in the days leading up to the incident was inconsistent with Sydney 
Trains' rostering principles. 

Status of the safety issue 

Issue status: Not addressed 

Justification: The ATSB makes the following recommendation so that actions to address the safety issue are 
effectively monitored and reported. 

 

ATSB safety recommendation to Sydney Trains 

Action number: RO-2018-004-SR-020 

Action status: Monitor 

 

The Australian Transport Safety Bureau recommends that Sydney Trains take safety action to 
ensure that existing procedures regarding adequate rest breaks between shift cycles and start 
time rotations are reinforced to safeguard against fatigue impairment of train crew. 
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General details 
Occurrence details 

Date and time: 22 January 2018 at 0951 EDT 

Occurrence category: Accident 

Primary occurrence type: Collision 

Location: Richmond, New South Wales 

 Latitude: 33º 35.93' S Longitude: 150º 45.142' E 

Train details 
Train operator: Sydney Trains 

Registration: A42 

Type of operation: Passenger 

Persons on board: Crew – 2 Passengers – 24 

Injuries: Crew – 2 Passengers – 14 

Damage: Substantial 
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Sources and submissions 
Sources of information 
The sources of information during the investigation included:  

• Downer  
• NSW Police 
• NSW Ambulance 
• The Office of the National Rail Safety Regulator  
• Sydney Trains 
• Train crew of A42 
• Transport for NSW – Asset Standards Authority 
• The Transportation Safety Board of Canada 
• The National Transportation Safety Board (USA) 
• The Federal Railroad Administration (USA) 
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Under Part 4, Division 2 (Investigation Reports), Section 26 of the Transport Safety Investigation 
Act 2003 (the Act), the Australian Transport Safety Bureau (ATSB) may provide a draft report, on 
a confidential basis, to any person whom the ATSB considers appropriate. Section 26 (1) (a) of 
the Act allows a person receiving a draft report to make submissions to the ATSB about the draft 
report.  

A draft of this report was provided to Downer, the Office of National Rail Safety Regulator, Sydney 
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Submissions were received from Downer, the Office of National Rail Safety Regulator, Sydney 
Trains, and Transport for NSW. The submissions were reviewed and where considered 
appropriate, the text of the draft report was amended accordingly. 
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Glossary 
Anti-climbers – plates attached to the leading and intercar ends of the train to prevent overriding in 
a collision. 

Asset Standards Authority (ASA) – the ASA, as part of Transport for NSW, is the network design 
and standards authority for NSW transport assets. The ASA’s functions encompass all transport 
modes alongside organisational management systems, safety systems and environmental policy. 

Automatic Train Protection (ATP) – a system which supervises train speed and target speed, 
alerts the driver of the braking requirement, and enforces braking when necessary. The system 
may be intermittent, semi- continuous or continuous according to its track-to-train transmission 
updating characteristics. 

Buffer stop – mass concrete block or energy-absorbing device to stop train overrun – usually 
located at the end of the line (terminating station, sidings or train servicing facility roads). 

Buffer stop rams – energy-absorbing hydraulic devices positioned on a buffer stop to contact with 
train impact point. 

Coupler – the mechanism for joining two rail vehicles together. 

Crash boxes – box fitted to the leading and intercar ends of the train to absorb energy in the event 
of a collision. (The anti-climber plate is attached to the face of the crash box.) 

Crash emergency management system (CEMS) – a system integrated into a vehicle body design 
for controlling the energy absorbed, deceleration and structural deformation during crashes, in 
particular collisions. 

Crashworthiness – ability to mitigate the consequences of a collision in a controlled manner and 
reduce the risk of injury to the occupants. 

Fixed Train Stop – a device for applying train brakes if the driver exceeds the limit of authority; 
either at a red signal or dead end stopping point, by the means of a lever on the train striking a 
trackside arm. 

Intermediate train stops – mechanical trackside arms, spaced intermediately on approach to a risk 
point, and designed to apply the emergency train brakes if the speed of the train exceeds the safe 
stopping speed as measured by the signal timing of the train speed in the section. 

Operator Enable System (OES) – a device that applies emergency brakes and disables traction 
power if a continuous control input required of the driver or operator is interrupted or not detected. 
On conventional vehicles with an automatic brake, the emergency brake is achieved by directly 
venting the brake pipe to atmosphere. 

Overriding – an undesirable outcome of a train collision when the end of a train car lifts vertically 
relative to the adjoining car. 

Overrun – where a train passes a designated stopping point such as a platform or signal. 

Train stop and trip gear system – a system involving a trip valve on the train or vehicle and a trip 
arm located track side which when engaged, directly vents the brake pipe on the train or vehicle to 
atmosphere. The train stop is used at signals in conjunction with a red aspect and in areas where 
train speed is required to be externally controlled. 

Vigilance control system – a system that will react by bringing a vehicle or train to a stand if an 
acknowledgment input is not received within a specified time increment. On conventional vehicles 
with an automatic brake, this is achieved by directly venting the brake pipe to atmosphere. 
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Australian Transport Safety Bureau 
The Australian Transport Safety Bureau (ATSB) is an independent Commonwealth Government 
statutory agency. The ATSB is governed by a Commission and is entirely separate from transport 
regulators, policy makers and service providers. The ATSB’s function is to improve safety and 
public confidence in the aviation, marine and rail modes of transport through excellence in: 
independent investigation of transport accidents and other safety occurrences; safety data 
recording, analysis and research; fostering safety awareness, knowledge and action. 

The ATSB is responsible for investigating accidents and other transport safety matters involving 
civil aviation, marine and rail operations in Australia that fall within Commonwealth jurisdiction, as 
well as participating in overseas investigations involving Australian registered aircraft and ships. A 
primary concern is the safety of commercial transport, with particular regard to operations 
involving the travelling public.  

The ATSB performs its functions in accordance with the provisions of the Transport Safety 
Investigation Act 2003 and Regulations and, where applicable, relevant international agreements. 

Purpose of safety investigations 
The object of a safety investigation is to identify and reduce safety-related risk. ATSB 
investigations determine and communicate the factors related to the transport safety matter being 
investigated.  

It is not a function of the ATSB to apportion blame or determine liability. At the same time, an 
investigation report must include factual material of sufficient weight to support the analysis and 
findings. At all times the ATSB endeavours to balance the use of material that could imply adverse 
comment with the need to properly explain what happened, and why, in a fair and unbiased 
manner. 

Developing safety action 
Central to the ATSB’s investigation of transport safety matters is the early identification of safety 
issues in the transport environment. The ATSB prefers to encourage the relevant organisation(s) 
to initiate proactive safety action that addresses safety issues. Nevertheless, the ATSB may use 
its power to make a formal safety recommendation either during or at the end of an investigation, 
depending on the level of risk associated with a safety issue and the extent of corrective action 
undertaken by the relevant organisation.  

When safety recommendations are issued, they focus on clearly describing the safety issue of 
concern, rather than providing instructions or opinions on a preferred method of corrective action. 
As with equivalent overseas organisations, the ATSB has no power to enforce the implementation 
of its recommendations. It is a matter for the body to which an ATSB recommendation is directed 
to assess the costs and benefits of any particular means of addressing a safety issue. 

When the ATSB issues a safety recommendation to a person, organisation or agency, they must 
provide a written response within 90 days. That response must indicate whether they accept the 
recommendation, any reasons for not accepting part or all of the recommendation, and details of 
any proposed safety action to give effect to the recommendation. 

The ATSB can also issue safety advisory notices suggesting that an organisation or an industry 
sector consider a safety issue and take action where it believes it appropriate. There is no 
requirement for a formal response to an advisory notice, although the ATSB will publish any 
response it receives. 
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Enquiries 1800 020 616 
Notifications 1800 011 034 
REPCON 1800 020 505
Web www.atsb.gov.au
Twitter @ATSBinfo
Email atsbinfo@atsb.gov.au 
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Linkedin Australian Transport Safety Bureau
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